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Changes, New Features, and Fixes

Version 3.0.0

c++14 Switch from C++ standard 2003 to 2014
Example of changes implied by this:

 for (UInt g = _not_ghost; g <= _ghost; ++g) {
   GhostType gt = (GhostType)g;

   Mesh::type_iterator it = this->mesh.firstType(spatial_dimension, gt);
   Mesh::type_iterator end = this->mesh.lastType(spatial_dimension, gt);
   for (; it != end; ++it) {
     ElementType & type = *it;

       ...

   }

 }

becomes

 for (auto ghost_type : ghost_types) {
   for (auto type : mesh.elementTypes(spatial_dimension,
                                      ghost_type) {

     ...

   }

 }

feature Parallel cohesive elements

feature Models using new interface for solvers

– Same configuration for all models

– Solver can be configured in input file

– PETSc interface temporary inactive

– Periodic boundary condition temporary inactive

feature Element groups created by default for “physical_names”

feature Named arguments for functions (e.g. model.initFull(_analysis_method = _static) )

api Only one function to solve a step model.solveStep()

api Simplification of the parallel simulation with the mesh.distribute() function
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Chapter 1

Introduction

Akantumeans “little element” in Kinyarwanda, a Bantu language. From now on, it is also an open-
source object-oriented Finite-Element library with the ambition to be generic and efficient. Akantu
is developed within the LSMS (Computational Solid Mechanics Laboratory, lsms.epfl.ch) at
the Ecole Polytechnique Federale of Lausanne, Switzerland. The open-source philosophy is
important for any scientific software project evolution. The collaboration permitted by shared
codes enforces sanity when users (and not only developers) can scrutinize (and possibly criticize)
the implementation details.
Akantu was born with the vision to associate genericity, robustness and efficiency while ben-

efiting from the open-source visibility. Genericity is necessary to allow the easy exploration of
mathematical formulations through algorithmic ideas. Robustness and reliability is naturally
expected from any simulation software, even more in the context of parallel computations. In
order to achieve these goals, we made noticeable choices in the architecture of Akantu. First we
decided to use the object-oriented paradigm through C++. Then, in order to prevent extra cost
associated to virtual function calls, we designed the library as a hybrid architecture with objects at
high level layers and vectorization at low level layers. Thus, Akantu benefits from inheritance and
polymorphism mechanisms without the counterpart of having virtual calls within critical loops.
This coding philosophy, which was demonstrated to be highly efficient, is innovative in the field
of Finite-Element software.

This document is appropriate for researchers and engineers willing to use Akantu in order to
perform a finite-element calculation for solid mechanics, structural mechanics, contact mechanics
or heat transfer. The solid mechanics solver, which is the most complete and functional part of
Akantu, is presented in details in the remainder of this document.

5
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Chapter 2

Getting Started

2.1 Downloading the Code

The Akantu source code can be requested using the form accessible at the URL http://lsms.

epfl.ch/akantu. There, you will be asked to accept the LGPL license terms.

2.2 Compiling Akantu

Akantu is a cmake project, so to configure it, you can either follow the usual way:

  > cd akantu
  > mkdir build
  > cd build
  > ccmake ..
  [ Set the options that you need ]

  > make
  > make install

Or, use the Makefile we added for your convenience to handle the cmake configuration

  > cd akantu
  > make config
  > make
  > make install

All the Akantu options are documented in Appendix C.

2.3 Writing a main Function

First of all, Akantu needs to be initialized. The memory management included in the core library
handles the correct allocation and de-allocation of vectors, structures and/or objects. Moreover,
in parallel computations, the initialization procedure performs the communication setup. This is
achieved by a pair of functions ( initialize and finalize ) that are used as follows:

#include "aka_common.hh"
#include "..."

using namespace akantu;

int main(int argc, char *argv[]) {
  initialize("input_file.dat", argc, argv);

  // your code

  ...

7
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  finalize();

}

The initialize function takes the text inpute file and the program parameters which can be
parsed by Akantu in due form (see 7.1). Obviously it is necessary to include all files needed in
main. In this manual all provided code implies the usage of akantu as namespace.

2.4 Creating and Loading a Mesh

In its current state, Akantu supports three types of meshes: Gmsh [1], Abaqus [2] and Diana [3].
Once a Mesh object is created with a given spatial dimension, it can be filled by reading a mesh
input file. The method read of the class Mesh infers the mesh type from the file extension. If a
non-standard file extension is used, the mesh type has to be specified.

UInt spatial_dimension = 2;
Mesh mesh(spatial_dimension);

// Reading Gmsh files

mesh.read("my_gmsh_mesh.msh");

mesh.read("my_gmsh_mesh", _miot_gmsh);

// Reading Abaqus files

mesh.read("my_abaqus_mesh.inp");

mesh.read("my_abaqus_mesh", _miot_abaqus);

// Reading Diana files

mesh.read("my_diana_mesh.dat");

mesh.read("my_diana_mesh", _miot_diana);

The Gmsh reader adds the geometrical and physical tags as mesh data. The physical values
are stored as a UInt data called tag_0 , if a string name is provided it is stored as a std::string

data named physical_names . The geometrical tag is stored as a UInt data named tag_1 .
The Abaqus reader stores the ELSET in ElementGroups and the NSET in NodeGroups. The

material assignment can be retrieved from the std::string mesh data named abaqus_material .

2.5 Using Arrays

Data in Akantu can be stored in data containers implemented by the Array class. In its most
basic usage, the Array class implemented in Akantu is similar to the vector class of the Standard
Template Library (STL) for C++. A simple Array containing a sequence of nb_element values
(of a given type) can be generated with:

  Array<type> example_array(nb_element);

where type usually is Real , Int , UInt or bool . Each value is associated to an index, so that
data can be accessed by typing:

  auto & val = example_array(index)

Arrays can also contain tuples of values for each index. In that case, the number of components
per tuple must be specified at the Array creation. For example, if we want to create an Array

to store the coordinates (sequences of three values) of ten nodes, the appropriate code is the
following:
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  UInt nb_nodes = 10;
  UInt spatial_dimension = 3;

  Array<Real> position(nb_nodes, spatial_dimension);

In this case the x position of the eighth node number will be given by position(7, 0) (in C++,
numbering starts at 0 and not 1). If the number of components for the sequences is not specified,
the default value of 1 is used. Here is a list of some basic operations that can be performed on
Array :

◦ resize(size) change the size of the Array .

◦ clear() set all entries of the Array to zero.

◦ set(t) set all entries of the Array to t .

◦ copy(const Array<T> & other) copy another Array into the current one. The two Array

should have the same number of components.

◦ push_back(tuple) append a tuple with the correct number of components at the end of the
Array .

◦ erase(i) erase the value at the i-th position.

◦ find(value) search value in the current Array . Return position index of the first oc-
curence or −1 if not found.

◦ storage() Return the address of the allocated memory of the Array .

2.5.1 Arrays iterators

It is very common in Akantu to loop over arrays to perform a specific treatment. This ranges from
geometric calculation on nodal quantities to tensor algebra (in constitutive laws for example). The
Array object has the possibility to request iterators in order to make the writing of loops easier
and enhance readability. For instance, a loop over the nodal coordinates can be performed like:

  //accessing the nodal coordinates Array (spatial_dimension components)

  const auto & nodes = mesh.getNodes();

  //creating the iterators

  auto it  = nodes.begin(spatial_dimension);
  auto end = nodes.end(spatial_dimension);

  for (; it != end; ++it){
    const auto & coords = (*it);
    //do what you need

    ....

  }

In that example, each coords is a Vector<Real> containing geometrical array of size
spatial_dimension and the iteration is conveniently performed by the Array iterator.

With the switch to c++14 this can be also written as

  //accessing the nodal coordinates Array (spatial_dimension components)

  const auto & nodes = mesh.getNodes();

  for (const auto & coords : make_view(nodes, spatial_dimension) {
    //do what you need

    ....

  }
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The Array object is intensively used to store second order tensor values. In that case, it should
be specified that the returned object type is a matrix when constructing the iterator. This is done
when calling the begin function. For instance, assuming that we have a Array storing stresses,
we can loop over the stored tensors by:

  //creating the iterators

  auto it = stresses.begin(spatial_dimension, spatial_dimension);
  auto end = stresses.end(spatial_dimension, spatial_dimension);

  for (; it != end; ++it){
    Matrix<Real> & stress = (*it);
    //do what you need

    ....

  }

In that last example, the Matrix objects are spatial_dimension × spatial_dimension matrices.
The light objects Matrix and Vector can be used and combined to do most common linear
algebra. If the number of component is 1, it is possible to use a scalar_iterator rather than the
vector/matrix one.

In general, a mesh consists of several kinds of elements. Consequently, the amount of data
to be stored can differ for each element type. The straightforward example is the connectiv-
ity array, namely the sequences of nodes belonging to each element (linear triangular elements
have fewer nodes than, say, rectangular quadratic elements etc.). A particular data structure
called ElementTypeMapArray is provided to easily manage this kind of data. It consists of
a group of Arrays , each associated to an element type. The following code can retrieve the
ElementTypeMapArray which stores the connectivity arrays for a mesh:

  const ElementTypeMapArray<UInt> & connectivities = mesh.getConnectivities();

Then, the specific array associated to a given element type can be obtained by

  const Array<UInt> & connectivity_triangle = connectivities(_triangle_3);

where the first order 3-node triangular element was used in the presented piece of code.

2.5.2 Vector & Matrix

The Array iterators as presented in the previous section can be shaped as Vector or Matrix .
This objects represent 1st and 2nd order tensors. As such they come with some functionalities that
we will present a bit more into detail in this here.

Vector<T>

1. Accessors:

◦ v(i) gives the ith component of the vector v

◦ v[i] gives the ith component of the vector v

◦ v.size() gives the number of component

2. Level 1: (results are scalars)

◦ v.norm() returns the geometrical norm (L2)

◦ v.norm<N>() returns the LN norm defined as
(∑

i | v(i) |
N
)1/N

. N can take any positive
integer value. There are also some particular values for the most commonly used
norms, L_1 for the Manhattan norm, L_2 for the geometrical norm and L_inf for the
norm infinity.
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◦ v.dot(x) return the dot product of v and x

◦ v.distance(x) return the geometrical norm of v − x

3. Level 2: (results are vectors)

◦ v += s , v -= s , v *= s , v /= s those are element-wise operators that sum, sub-
stract, multiply or divide all the component of v by the scalar s

◦ v += x , v -= x sums or substracts the vector x to/from v

◦ v.mul(A, x, alpha) stores the result of αAx in v , α is equal to 1 by default

◦ v.solve(A, b) stores the result of the resolution of the system Ax = b in v

◦ v.crossProduct(v1, v2) computes the cross product of v1 and v2 and stores the
result in v

Matrix<T>

1. Accessors:

◦ A(i, j) gives the component Ai j of the matrix A

◦ A(i) gives the ith column of the matrix as a Vector

◦ A[k] gives the kth component of the matrix, matrices are stored in a column major way,
which means that to access Ai j, k = i + jM

◦ A.rows() gives the number of rows of A (M)

◦ A.cols() gives the number of columns of A (N)

◦ A.size() gives the number of component in the matrix (M ×N)

2. Level 1: (results are scalars)

◦ A.norm() is equivalent to A.norm<L_2>()

◦ A.norm<N>() returns the LN norm defined as
(∑

i
∑

j | A(i,j) |
N
)1/N

. N can take any
positive integer value. There are also some particular values for the most commonly
used norms, L_1 for the Manhattan norm, L_2 for the geometrical norm and L_inf
for the norm infinity.

◦ A.trace() return the trace of A

◦ A.det() return the determinant of A

◦ A.doubleDot(B) return the double dot product of A and B , A : B

3. Level 3: (results are matrices)

◦ A.eye(s) , Matrix<T>::eye(s) fills/creates a matrix with the sI with I the identity
matrix

◦ A.inverse(B) stores B−1 in A

◦ A.transpose() returns At

◦ A.outerProduct(v1, v2) stores v1v2
t in A

◦ C.mul<t_A, t_B>(A, B, alpha) : stores the result of the product of A and codeB time
the scalar alpha in C . t_A and t_B are boolean defining if A and B should be
transposed or not.
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t_A t_B result

false false C = αAB
false true C = αABt

true false C = αAtB
true true C = αAtBt

◦ A.eigs(d, V) this method computes the eigenvalues and eigenvectors of A and store
the results in d and V such that d(i) = λi and V(i) = vi with Avi = λivi and
λ1 > ... > λi > ... > λN

Tensor3<T>

Accessors:

◦ t(i, j, k) gives the component Ti jk of the tensor t

◦ t(k) gives the kth two-dimensional tensor as a Matrix

◦ t[k] gives the kth two-dimensional tensor as a Matrix

2.6 Manipulating group of nodes and/or elements

Akantu provides the possibility to manipulate subgroups of elements and nodes. Any
ElementGroup and/or NodeGroup must be managed by a GroupManager . Such a manager has the
role to associate group objects to names. This is a useful feature, in particular for the application of
the boundary conditions, as will be demonstrated in section 4.1.2. To most general group manager
is the Mesh class which inheritates from the GroupManager class.

For instance, the following code shows how to request an element group to a mesh:

  // request creation of a group of nodes

  NodeGroup & my_node_group = mesh.createNodeGroup("my_node_group");

  // request creation of a group of elements

  ElementGroup & my_element_group = mesh.createElementGroup("my_element_group"

);

  /* fill and use the groups */

2.6.1 The NodeGroup object

A group of nodes is stored in NodeGroup objects. They are quite simple objects which store the
indexes of the selected nodes in a Array<UInt> . Nodes are selected by adding them when calling
NodeGroup::add . For instance you can select nodes having a positive X coordinate with the
following code:

  const auto & nodes = mesh.getNodes();
  auto & group = mesh.createNodeGroup("XpositiveNode");

  for (auto && data : enumerate(make_view(nodes, spatial_dimension))){
    auto node = std::get<0>(data);
    const auto & position = std::get<1>(data);
    if (position(0) > 0) group.add(node);
  }
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2.6.2 The ElementGroup object

A group of elements is stored in ElementGroup objects. Since a group can contain elements of
various types the ElementGroup object stores indexes in a ElementTypeMapArray<UInt> object.
Then elements can be added to the group by calling addElement .

For instance, selecting the elements for which the barycenter of the nodes has a positive X
coordinate can be made with:

  auto & group = mesh.createElementGroup("XpositiveElement");
  Vector<Real> barycenter(spatial_dimension);

  for(auto type : mesh.elementTypes()){
    UInt nb_element  = mesh.getNbElement(type);

    for(UInt e = 0; e < nb_element; ++e) {
      Element element{type, e, _not_ghost};

      mesh.getBarycenter(element, barycenter);

      if (barycenter(_x) > 0.) group.add(element);
    }

  }

2.7 Compiling your simulation

The easiest way it to create a cmake project. The minimum CMakeLists.txt file would look like

  project(my_simu)
  cmake_minimum_required(VERSION 3.0.0)

  find_package(Akantu REQUIRED)

  add_akantu_simulation(my_simu my_simu.cc)





Chapter 3

FEEngine

The FEEngine interface is dedicated to handle the finite-element approximations and the numer-
ical integration of the weak form. As we will see in Chapter 4, Model creates its own FEEngine

object so the explicit creation of the object is not required.

3.1 Mathematical Operations

Using the FEEngine object, one can compute a interpolation, an integration or a gradient. A
simple example is given below.

// having a FEEngine object

FEEngine *fem = new FEEngineTemplate<IntegratorGauss,ShapeLagrange>(my_mesh,
                                                                    dim,

                                                                    "my_fem");

// instead of this, a FEEngine object can be get using the model:

// model.getFEEngine()

//compute the gradient

Array<Real> u; //append the values you want
Array<Real> nablauq; //gradient array to be computed
// compute the gradient

fem->gradientOnIntegrationPoints(const Array<Real> &u,
         Array<Real> &nablauq,
         const UInt nb_degree_of_freedom,
         const ElementType & type);

// interpolate

Array<Real> uq; //interpolated array to be computed
// compute the interpolation

fem->interpolateOnIntegrationPoints(const Array<Real> &u,
                                    Array<Real> &uq,
                                    UInt nb_degree_of_freedom,
                                    const ElementType & type);

// interpolated function can be integrated over the elements

Array<Real> int_val_on_elem;
// integrate

fem->integrate(const Array<Real> &uq,
               Array<Real> &int_uq,
               UInt nb_degree_of_freedom,
               const ElementType & type);

Another example below shows how to integrate stress and strain fields over elements assigned
to a particular material.

15
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UInt sp_dim = 3; //spatial dimension
UInt m = 1; //material index of interest
const ElementType type = _tetrahedron_4; //element type

// get the stress and strain arrays associated to the material index m

const Array<Real> & strain_vec = model.getMaterial(m).getGradU(type);
const Array<Real> & stress_vec = model.getMaterial(m).getStress(type);

// get the element filter for the material index

const Array<UInt> & elem_filter = model.getMaterial(m).getElementFilter(type);

// initialize the integrated stress and strain arrays

Array<Real> int_strain_vec(elem_filter.getSize(),
                           sp_dim*sp_dim, "int_of_strain");

Array<Real> int_stress_vec(elem_filter.getSize(),
                           sp_dim*sp_dim, "int_of_stress");

// integrate the fields

model.getFEEngine().integrate(strain_vec, int_strain_vec,

                              sp_dim*sp_dim, type, _not_ghost, elem_filter);

model.getFEEngine().integrate(stress_vec, int_stress_vec,

                              sp_dim*sp_dim, type, _not_ghost, elem_filter);

3.2 Elements

The base for every Finite-Elements computation is its mesh and the elements that are used within
that mesh. The element types that can be used depend on the mesh, but also on the dimensionality
of the problem (1D, 2D or 3D). In Akantu, several isoparametric Lagrangian element types are
supported (and one serendipity element). Each of these types is discussed in some detail below,
starting with the 1D-elements all the way to the 3D-elements. More detailed information (shape
function, location of Gaussian quadrature points, and so on) can be found in Appendix A.

3.2.1 Isoparametric Elements

1D

In Akantu, there are two types of isoparametric elements defined in 1D. These element types are
called _segment_2 and _segment_3 , and are depicted schematically in Figure 3.1. Some of the
basic properties of these elements are listed in Table 3.1.

(a) _segment_2 (b) _segment_3

Figure 3.1: Schematic overview of the two 1D element types in Akantu. In each element, the node
numbering as used in Akantu is indicated and also the quadrature points are highlighted (gray
circles).
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Element type Order # nodes # quad. points

_segment_2 linear 2 1
_segment_3 quadratic 3 2

Table 3.1: Some basic properties of the two 1D isoparametric elements in Akantu.

2D

In Akantu, there are four types of isoparametric elements defined in 2D. These element types
are called _triangle_3 , _triangle_6 , _quadrangle_4 and _quadrangle_8 , and all of them
are depicted in Figure 3.2. As with the 1D elements, some of the most basic properties of these
elements are listed in Table 3.2. It is important to note that the first element is linear, the next two
quadratic and the last one cubic. Furthermore, the last element type ( _quadrangle_8 ) is not a
Lagrangian but a serendipity element.

(a) _triangle_3 (b) _triangle_6

(c) _quadrangle_4 (d) _quadrangle_8

Figure 3.2: Schematic overview of the four 2D element types in Akantu. In each element, the node
numbering as used in Akantu is indicated and also the quadrature points are highlighted (gray
circles).

3D

In Akantu, there are three types of isoparametric elements defined in 3D. These element types are
called _tetrahedron_4 , _tetrahedron_10 and _hexahedron_8 , and all of them are depicted
schematically in Figure 3.3. As with the 1D and 2D elements some of the most basic properties of
these elements are listed in Table 3.3.
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Element type Order # nodes # quad. points

_triangle_3 linear 3 1
_triangle_6 quadratic 6 3
_quadrangle_4 quadratic 4 4
_quadrangle_8 cubic 8 9

Table 3.2: Some basic properties of the four 2D isoparametric elements in Akantu.

(a) _tetrahedron_4 (b) _tetrahedron_10 (c) _hexahedron_8

Figure 3.3: Schematic overview of the three 3D element types in Akantu. In each element, the node
numbering as used in Akantu is indicated and also the quadrature points are highlighted (gray
spheres).

Element type Order # nodes # quad. points

_tetrahedron_4 linear 4 1
_tetrahedron_10 quadratic 10 4
_hexahedron_8 cubic 8 8

Table 3.3: Some basic properties of the three 3D isoparametric elements in Akantu.

3.2.2 Cohesive Elements

The cohesive elements that have been implemented in Akantu are based on the work of Ortiz and
Pandolfi [4]. Their main properties are reported in Table 3.4.

Element type Facet type Order # nodes # quad. points

_cohesive_1d_2 _point_1 linear 2 1
_cohesive_2d_4 _segment_2 linear 4 1
_cohesive_2d_6 _segment_3 quadratic 6 2
_cohesive_3d_6 _triangle_3 linear 6 1
_cohesive_3d_12 _triangle_6 quadratic 12 3

Table 3.4: Some basic properties of the cohesive elements in Akantu.

Cohesive element insertion can be either realized at the beginning of the simulation or it can
be carried out dynamically during the simulation. The first approach is called intrinsic, the second
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Figure 3.4: Cohesive element in 2D for quadratic triangular elements T6.

boundary

loop

doubled nodes

Figure 3.5: Insertion of a cohesive element.

one extrinsic. When an element is present from the beginning, a bilinear or exponential cohesive
law should be used instead of a linear one. A bilinear law works exactly like a linear one except
for an additional parameter δ0 separating an initial linear elastic part from the linear irreversible
one. For additional details concerning cohesive laws see Section 4.5.

Extrinsic cohesive elements are dynamically inserted between two standard elements when

σeff > σc with σeff =

√
σ2

n +
τ2

β2 (3.1)

in which σn is the tensile normal traction and τ the resulting tangential one (Figure 3.5).

For the static analysis of the structures containing cohesive elements, the stiffness of the
cohesive elements should also be added to the total stiffness of the structure. Considering a 2D
quadratic cohesive element as that in Figure 3.4, the opening displacement along the mid-surface
can be written as:

∆(s) = ~u�N(s) =

[
u3 − u0 u4 − u1 u5 − u2

v3 − v0 v4 − v1 v5 − v2

] 
N0(s)
N1(s)
N2(s)

 = NkAU = PU (3.2)
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The U, A and Nk are as following:

U =
[

u0 v0 u1 v1 u2 v2 u3 v3 u4 v4 u5 v5
]

(3.3)

A =



1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1


(3.4)

Nk =

[
N0(s) 0 N1(s) 0 N2(s) 0

0 N0(s) 0 N1(s) 0 N2(s)

]
(3.5)

The consistent stiffness matrix for the element is obtained as

K =

∫
S0

PT ∂T
∂δ

P dS0 (3.6)

where T is the cohesive traction and δ the opening displacement (for more details check Section 3.4).

3.2.3 Structural Elements

Bernoulli Beam Elements

These elements allow to compute the displacements and rotations of structures constituted by
Bernoulli beams. Akantu defines them for both 2D and 3D problems respectively in the element
types _bernoulli_beam_2 and _bernoulli_beam_3 . A schematic depiction of a beam element
is shown in Figure 3.6 and some of its properties are listed in Table 3.5.

Note: Beam elements are of mixed order: the axial displacement is linearly interpolated while transverse
displacements and rotations use cubic shape functions.

Figure 3.6: Schematic depiction of a Bernoulli beam element (applied to 2D and 3D) in Akantu. The
node numbering as used in Akantu is indicated, and also the quadrature points are highlighted
(gray circles).

Element type Dimension # nodes # quad. points # d.o.f.

_bernoulli_beam_2 2D 2 3 6
_bernoulli_beam_3 3D 2 3 12

Table 3.5: Some basic properties of the beam elements in Akantu
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Solid Mechanics Model

The solid mechanics model is a specific implementation of the Model interface dedicated to handle
the equations of motion or equations of equilibrium. The model is created for a given mesh. It will
create its own FEEngine object to compute the interpolation, gradient, integration and assembly
operations. A SolidMechanicsModel object can simply be created like this:

  SolidMechanicsModel model(mesh);

where mesh is the mesh for which the equations are to be solved. A second parameter called
spatial_dimension can be added after mesh if the spatial dimension of the problem is different
than that of the mesh.

This model contains at least the following six Arrays :

blocked_dofs contains a Boolean value for each degree of freedom specifying whether that de-
gree is blocked or not. A Dirichlet boundary condition can be prescribed by setting the
blocked_dofs value of a degree of freedom to true . A Neumann boundary condition can
be applied by setting the blocked_dofs value of a degree of freedom to false . The dis-
placement, velocity and acceleration are computed for all degrees of freedom for which the
blocked_dofs value is set to false . For the remaining degrees of freedom, the imposed
values (zero by default after initialization) are kept.

displacement contains the displacements of all degrees of freedom. It can be either a computed
displacement for free degrees of freedom or an imposed displacement in case of blocked
ones (u in the following).

velocity contains the velocities of all degrees of freedom. As displacement, it contains computed
or imposed velocities depending on the nature of the degrees of freedom (u̇ in the following).

acceleration contains the accelerations of all degrees of freedom. As displacement, it contains
computed or imposed accelerations depending on the nature of the degrees of freedom (ü
in the following).

external_force contains the external forces applied on the nodes ( f ext in the following).

internal_force contains the internal forces on the nodes ( f int in the following).

Some examples to help to understand how to use this model will be presented in the next
sections.

21
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4.1 Model Setup

4.1.1 Setting Initial Conditions

For a unique solution of the equations of motion, initial displacements and velocities for all degrees
of freedom must be specified:

u(t = 0) = u0 (4.1)

u̇(t = 0) = v0 (4.2)

The solid mechanics model can be initialized as follows:

  model.initFull()

This function initializes the internal arrays and sets them to zero. Initial displacements and
velocities that are not equal to zero can be prescribed by running a loop over the total number of
nodes. Here, the initial displacement in x-direction and the initial velocity in y-direction for all
nodes is set to 0.1 and 1, respectively.

auto & disp = model.getDisplacement();
auto & velo = model.getVelocity();

for (UInt node = 0; node < mesh.getNbNodes(); ++node) {
  disp(node, 0) = 0.1;

  velo(node, 1) = 1.;

}

4.1.2 Setting Boundary Conditions

This section explains how to impose Dirichlet or Neumann boundary conditions. A Dirichlet
boundary condition specifies the values that the displacement needs to take for every point x at
the boundary (Γu) of the problem domain (Fig. 4.1):

u = ū ∀x ∈ Γu (4.3)

A Neumann boundary condition imposes the value of the gradient of the solution at the boundary
Γt of the problem domain (Fig. 4.1):

t = σn = t̄ ∀x ∈ Γt (4.4)

Different ways of imposing these boundary conditions exist. A basic way is to loop over nodes
or elements at the boundary and apply local values. A more advanced method consists of using
the notion of the boundary of the mesh. In the following both ways are presented.

Starting with the basic approach, as mentioned, the Dirichlet boundary conditions can be
applied by looping over the nodes and assigning the required values. Figure 4.2 shows a beam
with a fixed support on the left side. On the right end of the beam, a load is applied. At the fixed
support, the displacement has a given value. For this example, the displacements in both the x
and the y-direction are set to zero. Implementing this displacement boundary condition is similar
to the implementation of initial displacement conditions described above. However, in order to
impose a displacement boundary condition for all time steps, the corresponding nodes need to be
marked as boundary nodes using the function blocked . While, in order to impose a load on the
right side, the nodes are not marked. The detail codes are shown as follows:

auto & blocked = model.getBlockedDOFs();
const auto & pos = mesh.getNodes();

UInt nb_nodes = mesh.getNbNodes();
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e3 x
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Figure 4.1: Problem domain Ω with boundary in three dimensions. The Dirchelet and the Neu-
mann regions of the boundary are denoted with Γu and Γt, respecitvely.

for (UInt node = 0; node < nb_nodes; ++node) {
  if(Math::are_float_equal(pos(node, _x), 0)) {
    blocked(node, _x) = true; // block dof in x-direction
    blocked(node, _y) = true; // block dof in y-direction
    disp(node, _x) = 0.; // fixed displacement in x-direction

    disp(node, _y) = 0.; // fixed displacement in y-direction

  } else if (Math::are_float_equal(pos(node, _y), 0)) {
    blocked(node, _x) = false; // unblock dof in x-direction
    forces(node, _x) = 10.;    // force in x-direction

  }

}

t 

Figure 4.2: Beam with fixed support and load.

For the more advanced approach, one needs the notion of a boundary in the mesh. Therefore,
the boundary should be created before boundary condition functors can be applied. Generally
the boundary can be specified from the mesh file or the geometry. For the first case, the function
createGroupsFromMeshData is called. This function can read any types of mesh data which are
provided in the mesh file. If the mesh file is created with Gmsh, the function takes one input
strings which is either tag_0 , tag_1 or physical_names . The first two tags are assigned by
Gmsh to each element which shows the physical group that they belong to. In Gmsh, it is also
possible to consider strings for different groups of elements. These elements can be separated by
giving a string physical_names to the function createGroupsFromMeshData :

mesh.createGroupsFromMeshData<std::string>("physical_names").

Boundary conditions support can also be created from the geometry by calling
createBoundaryGroupFromGeometry . This function gathers all the elements on the boundary
of the geometry.
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To apply the required boundary conditions, the function applyBC needs to be called on
a SolidMechanicsModel . This function gets a Dirichlet or Neumann functor and a string
which specifies the desired boundary on which the boundary conditions is to be applied. The
functors specify the type of conditions to apply. Three built-in functors for Dirichlet exist:
FlagOnly, FixedValue, and IncrementValue . The functor FlagOnly is used if a point is
fixed in a given direction. Therefore, the input parameter to this functor is only the fixed direction.
The FixedValue functor is used when a displacement value is applied in a fixed direction. The
IncrementValue applies an increment to the displacement in a given direction. The following
code shows the utilization of three functors for the top, bottom and side surface of the mesh which
were already defined in the Gmsh file:

model.applyBC(BC::Dirichlet::FixedValue(13.0, _y), "Top");

model.applyBC(BC::Dirichlet::FlagOnly(_x), "Bottom");

model.applyBC(BC::Dirichlet::IncrementValue(13.0, _x), "Side");

To apply a Neumann boundary condition, the applied traction or stress should be specified
before. In case of specifying the traction on the surface, the functor FromTraction of Neumann
boundary conditions is called. Otherwise, the functor FromStress should be called which gets
the stress tensor as an input parameter.

Vector<Real> surface_traction = {0., 0., 1.};
auto surface_stress(3, 3) = Matrix<Real>::eye(3);

model.applyBC(BC::Neumann::FromTraction(surface_traction), "Bottom");

model.applyBC(BC::Neumann::FromStress(surface_stress), "Top");

If the boundary conditions need to be removed during the simulation, a functor is called from
the Neumann boundary condition to free those boundary conditions from the desired boundary.

 model.applyBC(BC::Neumann::FreeBoundary(), "Side");

User specified functors can also be implemented. A full example for setting both initial and
boundary conditions can be found in examples/boundary_conditions.cc . The problem solved
in this example is shown in Fig. 4.3. It consists of a plate that is fixed with movable supports on
the left and bottom side. On the right side, a traction, which increases linearly with the number of
time steps, is applied. The initial displacement and velocity in x-direction at all free nodes is zero
and two respectively.

t(t) 

Figure 4.3: Plate on movable supports.

As it is mentioned in Section 2.6, node and element groups can be used to assign the boundary
conditions. A generic example is given below with a Dirichlet boundary condition.

  // create a node group

  NodeGroup & node_group = mesh.createNodeGroup("nodes_fix");

  /*

  fill the node group with the nodes you want
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  */

  // create an element group using the existing node group

  mesh.createElementGroupFromNodeGroup("el_fix", "nodes_fix", 

spatial_dimension-1);

  // boundary condition can be applied using the element group name

  model.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "el_fix");

4.1.3 Material Selector

If the user wants to assign different materials to different finite elements groups in Akantu, a
material selector has to be used. By default, Akantu assigns the first valid material in the material
file to all elements present in the model (regular continuum materials are assigned to the regular
elements and cohesive materials are assigned to cohesive elements or element facets).

To assign different materials to specific elements, mesh data information such as tag infor-
mation or specified physical names can be used. MeshDataMaterialSelector class uses this
information to assign different materials. With the proper physical name or tag name and index,
different materials can be assigned as demonstrated in the examples below.

  auto mat_selector = std::make_shared<MeshDataMaterialSelector<std::string>>(
"physical_names", model);

  model.setMaterialSelector(mat_selector);

In this example the physical names specified in a GMSH geometry file will by used to match
the material names in the input file.

Another example would be to use the first ( tag_0 ) or the second ( tag_1 ) tag associated to
each elements in the mesh:

  auto mat_selector = std::make_shared<MeshDataMaterialSelector<UInt>>(
      "tag_1", model, first_index);

  model.setMaterialSelector(*mat_selector);

where first_index (default is 1) is the value of tag_1 that will be associated to the first
material in the material input file. The following values of the tag will be associated with the
following materials.

There are four different material selectors pre-defined in Akantu. MaterialSelector and
DefaultMaterialSelector is used to assign a material to regular elements by default. For the
regular elements, as in the example above, MeshDataMaterialSelector can be used to assign
different materials to different elements.

Apart from the Akantu’s default material selectors, users can always develop their own classes
in the main code to tackle various multi-material assignment situations.

For cohesive material, Akantu has a pre-defined material selector to assign the first cohesive
material by default to the cohesive elements which is called DefaultMaterialCohesiveSelector
and it inherits its properties from DefaultMaterialSelector . Multiple cohesive materials can
be assigned using mesh data information (for more details, see 4.1.4).

4.1.4 Insertion of Cohesive Elements

Cohesive elements are currently compatible only with static simulation and dynamic simulation
with an explicit time integration scheme (see section 4.3.2). They do not have to be inserted when
the mesh is generated (intrinsic) but can be added during the simulation (extrinsic). At any time
during the simulation, it is possible to access the following energies with the relative function:

  Real Ed = model.getEnergy("dissipated");
  Real Er = model.getEnergy("reversible");
  Real Ec = model.getEnergy("contact");
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A new model have to be call in a very similar way that the solid mechanics model:

  SolidMechanicsModelCohesive model(mesh);

  model.initFull(_analysis_method = _explicit_lumped_mass,

                 _is_extrinsic = true);

Extrinsic approach

During the simulation, stress has to be checked along each facet in order to insert cohesive
elements where the stress criterion is reached. This check is performed by calling the method
checkCohesiveStress , as example before each step resolution:

  model.checkCohesiveStress();

  model.solveStep();

The area where stresses are checked and cohesive elements inserted can be limited using the
method setLimit on the CohesiveInserter during initialization. As example, to limit insertion
in the range [−1.5, 1.5] in the x direction:

  auto & inserter = model.getElementInserter();
  inserter.setLimit(_x, -1.5, 1.5);

Additional restrictions with respect to y and z directions can be added as well.

Intrinsic approach

Intrinsic cohesive elements are inserted in the mesh with the method initFull . Similarly, the
range of insertion can be limited with setLimit before the initFull call.

In both cases extrinsic and intrinsic the insertion can be restricted to group of elements. To do
so the list of groups should be specified in the input file.

  ...

  model solid_mechanics_model_cohesive [

    cohesive_inserter [

      cohesive_surfaces = [surface1, surface2, ...]

    ]

    material cohesive_linear [

      name = insertion

      beta = 1

      G_c = 10

      sigma_c = 1e6

    ]

  ]

4.2 Static Analysis

The SolidMechanicsModel class can handle different analysis methods, the first one being pre-
sented is the static case. In this case, the equation to solve is

Ku = f ext (4.5)

where K is the global stiffness matrix, u the displacement vector and f ext the vector of external
forces applied to the system.

To solve such a problem, the static solver of the SolidMechanicsModel object is used. First,
a model has to be created and initialized. To create the model, a mesh (which can be read from
a file) is needed, as explained in Section 2.4. Once an instance of a SolidMechanicsModel
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is obtained, the easiest way to initialize it is to use the initFull method by giving the
SolidMechanicsModelOptions . These options specify the type of analysis to be performed and
whether the materials should be initialized with initMaterials or not.

SolidMechanicsModel model(mesh);

model.initFull(_analysis_method = _static);

Here, a static analysis is chosen by passing the argument _static to the method. By default,
the Boolean for no initialization of the materials is set to false, so that they are initialized during
the initFull . The method initFull also initializes all appropriate vectors to zero. Once the
model is created and initialized, the boundary conditions can be set as explained in Section 4.1.2.
Boundary conditions will prescribe the external forces for some free degrees of freedom f ext and
displacements for some others. At this point of the analysis, the function solveStep can be called:

model.solveStep<_scm_newton_raphson_tangent_modified, _scc_residual>(1e-4, 1);

This function is templated by the solving method and the convergence criterion and takes two
arguments: the tolerance and the maximum number of iterations (100 by default), which are
1 × 10−4 and 1 for this example. The modified Newton-Raphson method is chosen to solve the
system. In this method, the equilibrium equation (4.5) is modified in order to apply a Newton-
Raphson convergence algorithm:

Ki+1δui+1 = r (4.6)

= f ext − f int (4.7)

= f ext − Kiui (4.8)

ui+1 = ui + δui+1 ,

where δu is the increment of displacement to be added from one iteration to the other, and i is the
Newton-Raphson iteration counter. By invoking the solveStep method in the first step, the global
stiffness matrix K from Equation (4.5) is automatically assembled. A Newton-Raphson iteration
is subsequently started, K is updated according to the displacement computed at the previous
iteration and one loops until the forces are balanced ( _scc_residual ), i.e., ||r|| < _scc_residual .
One can also iterate until the increment of displacement is zero ( _scc_increment ) which also
means that the equilibrium is found. For a linear elastic problem, the solution is obtained in one
iteration and therefore the maximum number of iterations can be set to one. But for a non-linear
case, one needs to iterate as long as the norm of the residual exceeds the tolerance threshold and
therefore the maximum number of iterations has to be higher, e.g. 100:

model.solveStep<_scm_newton_raphson_tangent_modified,_scc_residual>(1e-4, 100)

At the end of the analysis, the final solution is stored in the displacement vector. A full example
of how to solve a static problem is presented in the code examples/static/static.cc . This
example is composed of a 2D plate of steel, blocked with rollers on the left and bottom sides as
shown in Figure 4.4. The nodes from the right side of the sample are displaced by 0.01% of the
length of the plate.

The results of this analysis is depicted in Figure 4.5.

4.2.1 Static implicit analysis with dynamic insertion of cohesive elements

In order to solve problems with the extrinsic cohesive method in the static implicit solution scheme,
the function solveStepCohesive has to be used:

model.solveStepCohesive<_scm_newton_raphson_tangent, _scc_increment>(1e-13, 

error, 25, false, 1e5, true);
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Figure 4.4: Numerical setup

Figure 4.5: Solution of the static analysis. Left: the initial condition, right: the solution (deforma-
tion magnified 50 times)

in which the arguments are: tolerance, error, max_iteration, load_reduction,
tol_increase_factor, do_not_factorize. This function, first applies the Newton-Raphson proce-
dure to solve the problem. Then, it calls the method checkCohesiveStress to check if cohesive
elements have to be inserted. Since the approach is implicit, only one element is added, the
most stressed one (see Section 4.1.4). After insertion, the Newton-Raphson procedure is applied
again to solve the same incremental loading step, with the new inserted cohesive element. The
procedure loops in this way since no new cohesive elements have to be inserted. At that point,
the solution is saved, and the simulation can advance to the next incremental loading step. In
case the convergence is not reached, the obtained solution is not saved and the simulation return
to the main file with the error given by the solution saved in the argument of the function error.
In this way, the user can intervene in the simulation in order to find anyhow convergence. A
possibility is, for instance, to reduce the last incremental loading step. The variable load_reduction
can be used to identify if the load has been already reduced or not. At the same time, with the
variable tol_increase_factor it is possible to increase the tolerance by a factor defined by the user
in the main file, in order to accept a solution even with an error bigger than the tolerance set at
the beginning. It is possible to increase the tolerance only in the phase of loading reduction, i.e.,
when load_reduction = true. A not converged solution is never saved. In case the convergence
is not reached even after the loading reduction procedure, the displacement field is not updated
and remains the one of the last converged incremental steps. Also, cohesive elements are inserted
only if convergence is reached. An example of the extrinsic cohesive method in the static implicit
solution scheme is presented in examples/cohesive_element/cohesive_extrinsic_implicit .
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4.3 Dynamic Methods

Different ways to solve the equations of motion are implemented in the solid mechanics model.
The complete equations that should be solved are:

Mü + Cu̇ + Ku = f ext , (4.9)

where M, C and K are the mass, damping and stiffness matrices, respectively.
In the previous section, it has already been discussed how to solve this equation in the static

case, where ü = u̇ = 0. Here the method to solve this equation in the general case will be presented.
For this purpose, a time discretization has to be specified. The most common discretization method
in solid mechanics is the Newmark-β method, which is also the default in Akantu.

For the Newmark-β method, (4.9) becomes a system of three equations (see [5] [6] for more
details):

Mün+1 + Cu̇n+1 + Kun+1 = f ext n+1 (4.10)

un+1 = un + (1 − α) ∆tu̇n + α∆tu̇n+1 +
(1
2
− α

)
∆t2ün (4.11)

u̇n+1 = u̇n +
(
1 − β

)
∆tün + β∆tün+1 (4.12)

In these new equations, ün, u̇n and un are the approximations of ü(tn), u̇(tn) and u(tn). Equa-
tion (4.10) is the equation of motion discretized in space (finite-element discretization), and equa-
tions (4.11) and (4.12) are discretized in both space and time (Newmark discretization). The α and
β parameters determine the stability and the accuracy of the algorithm. Classical values for α and
β are usually β = 1/2 for no numerical damping and 0 < α < 1/2.

α Method (β = 1/2) Type

0 central difference explicit
1/6 Fox-Goodwin (royal road) implicit
1/3 Linear acceleration implicit
1/2 Average acceleration (trapezoidal rule) implicit

The solution of this system of equations, (4.10)-(4.12) is split into a predictor and a corrector
system of equations. Moreover, in the case of a non-linear equations, an iterative algorithm such
as the Newton-Raphson method is applied. The system of equations can be written as:

1. Predictor:

u0
n+1 = un + ∆tu̇n +

∆t2

2
ün (4.13)

u̇0
n+1 = u̇n + ∆tün (4.14)

ü0
n+1 = ün (4.15)

2. Solve:(
cM + dC + eKi

n+1

)
w = f ext n+1 − f int

i
n+1 − Cu̇i

n+1 −Müi
n+1 = ri

n+1 (4.16)

3. Corrector:

üi+1
n+1 = üi

n+1 + cw (4.17)

u̇i+1
n+1 = u̇i

n+1 + dw (4.18)

ui+1
n+1 = ui

n+1 + ew (4.19)
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where i is the Newton-Raphson iteration counter and c, d and e are parameters depending on
the method used to solve the equations

w e d c

in acceleration δü αβ∆t2 β∆t 1
in velocity δu̇ α∆t 1 1

β∆t
in displacement δu 1 1

α∆t
1

αβ∆t2

4.3.1 Implicit Time Integration

To solve a problem with an implicit time integration scheme, first a SolidMechanicsModel object
has to be created and initialized. Then the initial and boundary conditions have to be set. Every-
thing is similar to the example in the static case (Section 4.2), however, in this case the implicit
dynamic scheme is selected at the initialization of the model.

SolidMechanicsModel model(mesh);

model.initFull(_analysis_method = _implicit_dynamic);

/*Boundary conditions see Section ~ 4.1.2 */

Because a dynamic simulation is conducted, an integration time step ∆t has to be specified. In
the case of implicit simulations, Akantu implements a trapezoidal rule by default. That is to say
α = 1/2 and β = 1/2 which is unconditionally stable. Therefore the value of the time step can be
chosen arbitrarily within reason.

model.setTimeStep(time_step);

Since the system has to be solved for a given amount of time steps, the method solveStep() ,
(which has already been used in the static example in Section 4.2), is called inside a time loop:

/// time loop

Real time = 0.;

auto & solver = model.getNonLinearSolver();
solver.set("max_iterations", 100);

solver.set("threshold", 1e-12);

solver.set("convergence_type", _scc_solution);

for (UInt s = 1; time <max_time; ++s, time += time_step) {
  model.solveStep();

}

An example of solid mechanics with an implicit time integration scheme is presented in
examples/implicit/implicit_dynamic.cc . This example consists of a 3D beam of 10 m ×

1 m × 1 m blocked on one side and is on a roller on the other side. A constant force of 5 kN is
applied in its middle. Figure 4.6 presents the geometry of this case. The material used is a fictitious
linear elastic material with a density of 1000 kg m−3, a Young’s Modulus of 120 MPa and Poisson’s
ratio of 0.3. These values were chosen to simplify the analytical solution.

An approximation of the dynamic response of the middle point of the beam is given by:

u
(L

2
, t
)

=
1
π4

(
1 − cos

(
π2t

)
+

1
81

(
1 − cos

(
32π2t

))
+

1
625

(
1 − cos

(
52π2t

)))
(4.20)

Figure 4.7 presents the deformed beam at 3 different times during the simulation: time steps
0, 1000 and 2000.
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F

Figure 4.6: Numerical setup

0

1000

2000

Figure 4.7: Deformed beam at 3 different times (displacement are magnified by a factor 10).

4.3.2 Explicit Time Integration

The explicit dynamic time integration scheme is based on the Newmark-β scheme with α = 0 (see
equations 4.10-4.12). In Akantu, β is defaults to β = 1/2, see section 4.3.

The initialization of the simulation is similar to the static and implicit dynamic version. The
model is created from the SolidMechanicsModel class. In the initialization, the explicit scheme
is selected using the _explicit_lumped_mass constant.

SolidMechanicsModel model(mesh);

model.initFull(_analysis_method = _explicit_lumped_mass);

Note: Writing model.initFull() or model.initFull(); is equivalent to use the
_explicit_lumped_mass keyword, as this is the default case.

The explicit time integration scheme implemented in Akantu uses a lumped mass matrix M
(reducing the computational cost). This matrix is assembled by distributing the mass of each
element onto its nodes. The resulting M is therefore a diagonal matrix stored in the mass vector
of the model.

The explicit integration scheme is conditionally stable. The time step has to be smaller than
the stable time step which is obtained in Akantu as follows:

critical_time_step = model.getStableTimeStep();

The stable time step corresponds to the time the fastest wave (the compressive wave) needs to
travel the characteristic length of the mesh:

∆tcrit =
∆x
c

(4.21)

where ∆x is a characteristic length (e.g., the inradius in the case of linear triangle element) and c
is the celerity of the fastest wave in the material. It is generally the compressive wave of celerity

c =
√

2µ+λ
ρ , µ and λ are the first and second Lame’s coefficients and ρ is the density. However, it

is recommended to impose a time step that is smaller than the stable time step, for instance, by
multiplying the stable time step by a safety factor smaller than one.
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const Real safety_time_factor = 0.8;
Real applied_time_step = critical_time_step * safety_time_factor;
model.setTimeStep(applied_time_step);

The initial displacement and velocity fields are, by default, equal to zero if not given specifically
by the user (see 4.1.1).

Like in implicit dynamics, a time loop is used in which the displacement, velocity and ac-
celeration fields are updated at each time step. The values of these fields are obtained from the
Newmark−β equations with β = 1/2 and α = 0. In Akantu these computations at each time step
are invoked by calling the function solveStep :

for (UInt s = 1; (s-1)*applied_time_step < total_time; ++s) {
  model.solveStep();

}

The method solveStep wraps the four following functions:

◦ model.explicitPred() allows to compute the displacement field at t + 1 and a part of
the velocity field at t + 1, denoted by u̇p

n+1, which will be used later in the method
model.explicitCorr() . The equations are:

un+1 = un + ∆tu̇n +
∆t2

2
ün (4.22)

u̇p
n+1 = u̇n + ∆tün (4.23)

◦ model.updateResidual() and model.updateAcceleration() compute the acceleration
increment δü:(

M +
1
2

∆tC
)
δü = fext − f int n+1 − Cu̇p

n+1 −Mün (4.24)

Note: The internal force f int n+1 is computed from the displacement un+1 based on the constitutive
law.

◦ model.explicitCorr() computes the velocity and acceleration fields at t + 1:

u̇n+1 = u̇p
n+1 +

∆t
2
δü (4.25)

ün+1 = ün + δü (4.26)

The use of an explicit time integration scheme is illustrated by the example:
examples/explicit/explicit_dynamic.cc

This example models the propagation of a wave in a steel beam. The beam and the applied
displacement in the x direction are shown in Figure 4.8.

x

u
A

L

h

Figure 4.8: Numerical setup



4.4. CONSTITUTIVE LAWS 33

The length and height of the beam are L = 10 m and h = 1 m, respectively. The material is
linear elastic, homogeneous and isotropic (density: 7800 kg m−3, Young’s modulus: 210 GPa and
Poisson’s ratio: 0.3). The imposed displacement follow a Gaussian function with a maximum
amplitude of A = 0.01 m. The potential, kinetic and total energies are computed. The safety factor
is equal to 0.8.

4.4 Constitutive Laws

In order to compute an element’s response to deformation, one needs to use an appropriate
constitutive relationship. The constitutive law is used to compute the element’s stresses from the
element’s strains.

In the finite-element discretization, the constitutive formulation is applied to every quadrature
point of each element. When the implicit formulation is used, the tangent matrix has to be
computed.

The chosen materials for the simulation have to be specified in the mesh file or, as an alter-
native, they can be assigned using the element_material vector. For every material assigned
to the problem one has to specify the material characteristics (constitutive behavior and material
properties) using the text input file (see 7.1.3).
In order to conveniently store values at each quadrature in a material point Akantu pro-
vides a special data structure, the InternalField . The internal fields are inheriting from the
ElementTypeMapArray . Furthermore, it provides several functions for initialization, auto-resizing
and auto removal of quadrature points.

Sometimes it is also desired to generate random distributions of internal parameters. An
example might be the critical stress at which the material fails. To generate such a field, in the text
input file, a random quantity needs be added to the base value:

  sigma_c = base
  sigma_c = base uniform [min, max]
  sigma_c = base weibull [λ, m]

All parameters are real numbers. For the uniform distribution, minimum and maximum
values have to be specified. Random parameters are defined as a base value to which we add a
random number that follows the chosen distribution.

The Uniform distribution is gives a random values between in [min,max). The Weibull distri-
bution is characterized by the following cumulative distribution function:

F(x) = 1 − e−(x/λ)m
(4.27)

which depends on m and λ, which are the shape parameter and the scale parameter. These
random distributions are different each time the code is executed. In order to obtain always the
same one, it possible to manually set the seed that is the number from which these pseudo-random
distributions are created. This can be done by adding the following line to the input file outside
the material parameters environments:

  seed = 1.0

where the value 1.0 can be substituted with any number. Currently Akantu can reproduce always
the same distribution when the seed is specified only in serial. The value of the seed can be also
specified directly in the code (for instance in the main file) with the command:

  RandGenerator<Real>:: seed(1.0)

The same command, with empty brackets, can be used to check the value of the seed used in the
simulation.

The following sections describe the constitutive models implemented in Akantu. In Appendix B
a summary of the parameters for all materials of Akantu is provided.

http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://en.wikipedia.org/wiki/Weibull_distribution
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4.4.1 Elasticity

The elastic law is a commonly used constitutive relationship that can be used for a wide range
of engineering materials (e.g., metals, concrete, rock, wood, glass, rubber, etc.) provided that the
strains remain small (i.e., small deformation and stress lower than yield strength).

The elastic laws are often expressed as σ = C : ε with where σ is the Cauchy stress tensor, ε
represents the infinitesimal strain tensor and C is the elastic modulus tensor.

Linear isotropic (B.1)

The linear isotropic elastic behavior is described by Hooke’s law, which states that the stress is
linearly proportional to the applied strain (material behaves like an ideal spring), as illustrated
in Figure 4.9. The equation that relates the strains to the displacements is: point) from the

σ

ε

E

(a)

E

(b)

Figure 4.9: (a) Stress-strain curve for elastic material and (b) schematic representation of Hooke’s
law, denoted as a spring.

displacements as follows:

ε =
1
2

[
∇0u + ∇0uT

]
(4.28)

where ε represents the infinitesimal strain tensor, ∇0u the displacement gradient tensor according
to the initial configuration. The constitutive equation for isotropic homogeneous media can be
expressed as:

σ = λtr(ε)I + 2µε (4.29)

where σ is the Cauchy stress tensor (λ and µ are the the first and second Lame’s coefficients).
In Voigt notation this correspond to



σ11

σ22

σ33

σ23

σ13

σ12


=

E
(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2





ε11

ε22

ε33

2ε23

2ε13

2ε12


(4.30)



4.4. CONSTITUTIVE LAWS 35

Linear anisotropic (B.2)

This formulation is not sufficient to represent all elastic material behavior. Some materials have
characteristic orientation that have to be taken into account. To represent this anisotropy a more
general stress-strain law has to be used. For this we define the elastic modulus tensor as follow:



σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(4.31)

e2

e1

n2
n1

Figure 4.10: Material basis

To simplify the writing of input files the C tensor is expressed in the material basis. And this
basis as to be given too. This basis Ωmat = {n1,n2,n3} is used to define the rotation Ri j = n j.ei. And
C can be rotated in the global basis Ω = {e1, e2, e3} as follow:

CΩ = R1CΩmatR2 (4.32)

R1 =



R11R11 R12R12 R13R13 R12R13 R11R13 R11R12

R21R21 R22R22 R23R23 R22R23 R21R23 R21R22

R31R31 R32R32 R33R33 R32R33 R31R33 R31R32

R21R31 R22R32 R23R33 R22R33 R21R33 R21R32

R11R31 R12R32 R13R33 R12R33 R11R33 R11R32

R11R21 R12R22 R13R23 R12R23 R11R23 R11R22


(4.33)

R2 =



R11R11 R21R21 R31R31 R21R31 R11R31 R11R21

R12R12 R22R22 R32R32 R22R32 R12R32 R12R22

R13R13 R23R23 R33R33 R23R33 R13R33 R13R23

R12R13 R22R23 R32R33 R22R33 R12R33 R12R23

R11R13 R21R23 R31R33 R21R33 R11R33 R11R23

R11R12 R21R22 R31R32 R21R32 R11R32 R11R22


(4.34)

(4.35)

Linear orthotropic (B.3)

A particular case of anisotropy is when the material basis is orthogonal in which case the elastic
modulus tensor can be simplified and rewritten in terms of 9 independents material parameters.
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σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
c44 0 0

sym. c55 0
c66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(4.36)

c11 = E1(1 − ν23ν32)Γ c22 = E2(1 − ν13ν31)Γ c33 = E3(1 − ν12ν21)Γ (4.37)

c12 = E1(ν21 − ν31ν23)Γ = E2(ν12 − ν32ν13)Γ (4.38)

c13 = E1(ν31 − ν21ν32)Γ = E2(ν13 − ν21ν23)Γ (4.39)

c23 = E2(ν32 − ν12ν31)Γ = E3(ν23 − ν21ν13)Γ (4.40)

c44 = µ23 c55 = µ13 c66 = µ12 (4.41)

Γ =
1

1 − ν12ν21 − ν13ν31 − ν32ν23 − 2ν21ν32ν13
(4.42)

The Poisson ratios follow the rule νi j = ν jiEi/E j.

4.4.2 Neo-Hookean (B.4)

The hyperelastic Neo-Hookean constitutive law results from an extension of the linear elastic
relationship (Hooke’s Law) for large deformation. Thus, the model predicts nonlinear stress-
strain behavior for bodies undergoing large deformations.

Figure 4.11: Neo-hookean Stress-strain curve.

As illustrated in Figure 4.11, the behavior is initially linear and the mechanical behavior is very
close to the corresponding linear elastic material. This constitutive relationship, which accounts
for compressibility, is a modified version of the one proposed by Ronald Rivlin [7].

The strain energy stored in the material is given by:

Ψ(C) =
1
2
λ0 (ln J)2

− µ0 ln J +
1
2
µ0 (tr(C) − 3) (4.43)

where λ0 and µ0 are, respectively, Lamé’s first parameter and the shear modulus at the initial
configuration. J is the jacobian of the deformation gradient (F = ∇Xx): J = det(F). Finally C is the
right Cauchy-Green deformation tensor.
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Since this kind of material is used for large deformation problems, a finite deformation frame-
work should be used. Therefore, the Cauchy stress (σ) should be computed through the second
Piola-Kirchhoff stress tensor S:

σ =
1
J

FSFT (4.44)

Finally the second Piola-Kirchhoff stress tensor is given by:

S = 2
∂Ψ
∂C

= λ0 ln JC−1 + µ0

(
I − C−1

)
(4.45)

The parameters to indicate in the material file are the same as those for the elastic case: E
(Young’s modulus), nu (Poisson’s ratio).

4.4.3 Visco-Elasticity (B.5)

Visco-elasticity is characterized by strain rate dependent behavior. Moreover, when such a material
undergoes a deformation it dissipates energy. This dissipation results in a hysteresis loop in the
stress-strain curve at every loading cycle (see Figure 4.12a). In principle, it can be applied to many
materials, since all materials exhibit a visco-elastic behavior if subjected to particular conditions
(such as high temperatures). The standard rheological linear solid model (see Sections 10.2 and
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Figure 4.12: (a) Characteristic stress-strain behavior of a visco-elastic material with hysteresis loop
and (b) schematic representation of the standard rheological linear solid visco-elastic model.

10.3 of [8]) has been implemented in Akantu. This model results from the combination of a spring
mounted in parallel with a spring and a dashpot connected in series, as illustrated in Figure 4.12b.
The advantage of this model is that it allows to account for creep or stress relaxation. The equation
that relates the stress to the strain is (in 1D):

dε(t)
dt

= (E + EV)−1
·

[
dσ(t)

dt
+

EV

η
σ(t) −

EEV

η
ε(t)

]
(4.46)

where η is the viscosity. The equilibrium condition is unique and is attained in the limit, as t→∞.
At this stage, the response is elastic and depends on the Young’s modulus E. The mandatory
parameters for the material file are the following: rho (density), E (Young’s modulus), nu

(Poisson’s ratio), Plane_Stress (if set to zero plane strain, otherwise plane stress), eta (dashpot
viscosity) and Ev (stiffness of the viscous element).
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Note that the current standard linear solid model is applied only on the deviatoric part of the
strain tensor. The spheric part of the strain tensor affects the stress tensor like an linear elastic
material.

4.4.4 Small-Deformation Plasticity (B.6)

The small-deformation plasticity is a simple plasticity material formulation which accounts for
the additive decomposition of strain into elastic and plastic strain components. This formulation
is applicable to infinitesimal deformation where the additive decomposition of the strain is a valid
approximation. In this formulation, plastic strain is a shearing process where hydrostatic stress
has no contribution to plasticity and consequently plasticity does not lead to volume change.
Figure 4.13 shows the linear strain hardening elasto-plastic behavior according to the additive
decomposition of strain into the elastic and plastic parts in infinitesimal deformation as

ε = εe + εp (4.47)

σ = 2G(εe) + λtr(εe)I (4.48)
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Figure 4.13: Stress-strain curve for the small-deformation plasticity with linear isotropic hardening.

In this class, the von Mises yield criterion is used. In the von Mises yield criterion, the yield is
independent of the hydrostatic stress. Other yielding criteria such as Tresca and Gurson can be
easily implemented in this class as well.

In the von Mises yield criterion, the hydrostatic stresses have no effect on the plasticity and
consequently the yielding occurs when a critical elastic shear energy is achieved.

f = σeff − σy =
(3
2
σtr : σtr

) 1
2
− σy(εp) (4.49)

f < 0 Elastic deformation, f = 0 Plastic deformation (4.50)

where σy is the yield strength of the material which can be function of plastic strain in case of
hardening type of materials and σtr is the deviatoric part of stress given by

σtr = σ −
1
3

tr(σ)I (4.51)
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After yielding ( f = 0), the normality hypothesis of plasticity determines the direction of plastic
flow which is normal to the tangent to the yielding surface at the load point. Then, the tensorial
form of the plastic constitutive equation using the von Mises yielding criterion (see equation 4.34)
may be written as

∆εp = ∆p
∂ f
∂σ

=
3
2

∆p
σtr

σeff
(4.52)

In these expressions, the direction of the plastic strain increment (or equivalently, plastic strain
rate) is given by σtr

σeff
while the magnitude is defined by the plastic multiplier ∆p. This can be

obtained using the consistency condition which impose the requirement for the load point to remain
on the yielding surface in the plastic regime.

Here, we summarize the implementation procedures for the small-deformation plasticity with
linear isotropic hardening:

1. Compute the trial stress:

σtr = σt + 2G∆ε + λtr(∆ε)I (4.53)

2. Check the Yielding criteria:

f = (
3
2
σtr : σtr)1/2

− σy(εp) (4.54)

3. Compute the Plastic multiplier:

d∆p =
σtr

e f f − 3G∆P(k)
− σ(k)

y

3G + h
(4.55)

∆p(k+1) = ∆p(k) + d∆p (4.56)

σ(k+1)
y = (σy)t + h∆p (4.57)

4. Compute the plastic strain increment:

∆εp =
3
2

∆p
σtr

σeff
(4.58)

5. Compute the stress increment:

∆σ = 2G(∆ε − ∆εp) + λtr(∆ε − ∆εp)I (4.59)

6. Update the variables:

εp = εp
t + ∆εp (4.60)

σ = σt + ∆σ (4.61)

We use an implicit integration technique called the radial return method to obtain the plastic
multiplier. This method has the advantage of being unconditionally stable, however, the accuracy
remains dependent on the step size. The plastic parameters to indicate in the material file are: σy

(Yield stress) and h (Hardening modulus). In addition, the elastic parameters need to be defined
as previously mentioned: E (Young’s modulus), nu (Poisson’s ratio).
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4.4.5 Damage

In the simplified case of a linear elastic and brittle material, isotropic damage can be represented
by a scalar variable d, which varies from 0 to 1 for no damage to fully broken material respectively.
The stress-strain relationship then becomes:

σ = (1 − d) C : ε

where σ, ε are the Cauchy stress and strain tensors, and C is the elastic stiffness tensor. This
formulation relies on the definition of an evolution law for the damage variable. In Akantu, many
possibilities exist and they are listed below.

Marigo (B.7)

This damage evolution law is energy based as defined by Marigo [9,10]. It is an isotropic damage
law.

Y =
1
2
ε : C : ε (4.62)

F = Y − Yd − Sd (4.63)

d =

 min
(

Y−Yd
S , 1

)
if F > 0

unchanged otherwise
(4.64)

In this formulation, Y is the strain energy release rate, Yd the rupture criterion and S the damage
energy. The non-local version of this damage evolution law is constructed by averaging the energy
Y.

Mazars (B.8)

This law introduced by Mazars [11] is a behavioral model to represent damage evolution in
concrete. This model does not rely on the computation of the tangent stiffness, the damage is
directly evaluated from the strain.

The governing variable in this damage law is the equivalent strain εeq =
√
< ε >+:< ε >+, with

< . >+ the positive part of the tensor. This part is defined in the principal coordinates (I, II, III) as

εeq =
√
< εI >2

+ + < εII >2
+ + < εIII >2

+. The damage is defined as:

D = α
β
t Dt + (1 − αt)βDc (4.65)

Dt = 1 −
κ0(1 − At)

εeq
− At exp−Bt(εeq−κ0) (4.66)

Dc = 1 −
κ0(1 − Ac)

εeq
− Ac exp−Bc(εeq−κ0) (4.67)

αt =

∑3
i=1 < εi >+ εnd i

ε2
eq

(4.68)

With κ0 the damage threshold, At and Bt the damage parameter in traction, Ac and Bc the damage
parameter in compression, β is the shear parameter. αt is the coupling parameter between traction
and compression, the εi are the eigenstrain and the εnd i are the eigenvalues of the strain if the
material were undamaged.

The coefficients A and B are the post-peak asymptotic value and the decay shape parameters.
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Figure 4.14: Irreversible cohesive laws for explicit simulations.

4.5 Cohesive Constitutive laws

4.5.1 Linear Irreversible Law (B.10)

Akantu includes the Snozzi-Molinari [12] linear irreversible cohesive law (see Figure 4.14). It is an
extension to the Camacho-Ortiz [13] cohesive law in order to make dissipated fracture energy path-
dependent. The concept of free potential energy is dropped and a new independent parameter κ
is introduced:

κ =
Gc,II

Gc,I
(4.69)

where Gc,I and Gc,II are the necessary works of separation per unit area to open completely
a cohesive zone under mode I and mode II, respectively. Their model yields to the following
equation for cohesive tractions T in case of crack opening δ:

T =

(
β2

κ
∆tt + ∆nn

)
σc

δ

(
1 −

δ
δc

)
= T̂

σc

δ

(
1 −

δ
δc

)
(4.70)

where σc is the material strength along the fracture, δc the critical effective displacement after
which cohesive tractions are zero (complete decohesion), ∆t and ∆n are the tangential and normal
components of the opening displacement vector ∆, respectively. The parameter β is a weight that
indicates how big the tangential opening contribution is. The effective opening displacement is:

δ =

√
β2

κ2 ∆2
t + ∆2

n (4.71)

In case of unloading or reloading δ < δmax, tractions are calculated as:

Tn = ∆n
σc

δmax

(
1 −

δmax

δc

)
(4.72)

Tt =
β2

κ
∆t

σc

δmax

(
1 −

δmax

δc

)
(4.73)

so that they vary linearly between the origin and the maximum attained tractions. As shown in
Figure 4.14, in this law, the dissipated and reversible energies are:

Ediss =
1
2
σc δmax (4.74)

Erev =
1
2

T δ (4.75)
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Moreover, a damage parameter D can be defined as:

D = min
(
δmax

δc
, 1

)
(4.76)

which varies from 0 (undamaged condition) and 1 (fully damaged condition). This variable can
only increase because damage is an irreversible process. A simple penalty contact model has been
incorporated in the cohesive law so that normal tractions can be returned in case of compression:

Tn = α∆n if ∆n < 0 (4.77)

where α is a stiffness parameter that defaults to zero. The relative contact energy is equivalent to
reversible energy but in compression.

The material name of the linear decreasing cohesive law is material_cohesive_linear and
its parameters with their respective default values are:

◦ sigma_c : 0

◦ delta_c : 0

◦ beta : 0

◦ G_c : 0

◦ kappa : 1

◦ penalty : 0

where G_c corresponds to Gc,I. A random number generator can be used to assign a random σc to
each facet following a given distribution (see Section 4.4). Only one parameter between delta_c

and G_c has to be specified. For random σc distributions, the chosen parameter of these two is
kept fixed and the other one is varied.

The bilinear constitutive law works exactly the same way as the linear one, except for the
additional parameter delta_0 that by default is zero. Two examples for the extrinsic and in-
trinsic cohesive elements and also an example to assign different properties to intergranular and
transgranular cohesive elements can be found in the folder examples/cohesive_element/ .

4.5.2 Linear Cohesive Law with Friction (B.11)

This law represents a variation of the linear irreversible cohesive of the previous section, which
adds friction. The friction behavior is approximated with an elasto-plastic law, which relates the
friction force to the relative sliding between the two faces of the cohesive element. The slope
of the elastic branch is called penalty_for_friction, and is defined by the user, together with the
friction coefficient, as a material property. The friction contribution evolves with the damage of
the cohesive law: it is null when the damage is zero, and it becomes maximum when the damage
is equal to one. This is done by defining a current value of the friction coefficient (mu) that
increases linearly with the damage, up to the value of the friction coefficient defined by the user.
The yielding plateau of the friction law is given by the product of the current friction coefficient
and the local compression stress acting in the cohesive element. Such an approach is equivalent
to a node-to-node contact friction. Its accuracy is acceptable only for small displacements.

The material name of the linear cohesive law with friction is material_cohesive_linear_friction .
Its additional parameters with respect to those of the linear cohesive law without friction, with
the respective default values, are:

◦ mu : 0

◦ penalty_for_friction : 0
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4.5.3 Linear Cohesive Law with Fatigue (B.12)

This law represents a variation of the linear irreversible cohesive law of the previous section,
that removes the hypothesis of elastic unloading-reloading cycles. With this law, some energy is
dissipated also during unloading and reloading with hysteresis. The implementation follows the
work of [14]. During the unloading-reloading cycle, the traction increment is computed as

Ṫ =

K− δ̇ if δ̇ < 0

K+ δ̇ if δ̇ > 0
(4.78)

where δ̇ and Ṫ are respectively the effective opening displacement and the cohesive traction
increments with respect to time, while K− and K+ are respectively the unloading and reloading
incremental stiffness. The unloading path is linear and results in an unloading stiffness

K− =
Tmax

δmax
(4.79)

where Tmax and δmax are the maximum cohesive traction and the effective opening displacement
reached during the precedent loading phase. The unloading stiffness remains constant during the
unloading phase. On the other hand the reloading stiffness increment K̇+ is calculated as

K̇+ =

−K+ δ̇/δf if δ̇ > 0

(K+
− K−) δ̇/δf if δ̇ < 0

(4.80)

where δf is a material parameter (refer to [15] for more details). During unloading the stiffness K+

tends to K−, while during reloading K+ gets decreased at every time step. If the cohesive traction
during reloading exceeds the upper limit given by equation (4.70), it is recomputed following the
behavior of the linear decreasing cohesive law for crack opening.

4.5.4 Exponential Cohesive Law (B.13)

Ortiz and Pandolfi proposed this cohesive law in 1999 [4]. The traction-opening equation for this
law is as follows:

T = eσc
δ
δc

e−δ/δc (4.81)

This equation is plotted in Figure 4.15. The term ∂T/∂δ of equation (3.6) after the necessary
derivation can expressed as

∂T
∂δ

= T̂ ⊗
∂(T/δ)
∂δ

T̂
δ

+
T
δ

[
β2I +

(
1 − β2

)
(n ⊗ n)

]
(4.82)

where

∂(T/δ)
∂δ

=

 −eσc
δ2

c
e−δ/δc i fδ ≥ δmax

0 i fδ < δmax, δn > 0
(4.83)

As regards the behavior in compression, two options are available: a contact penalty approach
with stiffness following the formulation of the exponential law and a contact penalty approach
with constant stiffness. In the second case, the stiffness is defined as a function of the tangent of
the exponential law at the origin.
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Figure 4.15: Exponential cohesive law

4.6 Non-Local Constitutive Laws

Continuum damage modeling of quasi-brittle materials undergo significant softening after the
onset of damage. This fast growth of damage causes a loss of ellipticity of partial differential
equations of equilibrium. Therefore, the numerical simulation results won’t be objective anymore,
because the dissipated energy will depend on mesh size used in the simulation. One way to
avoid this effect is the use of non-local damage formulations. In this approach a local quantity
such as the strain is replaced by its non-local average, where the size of the domain, over which
the quantitiy is averaged, depends on the underlying material microstructure. Akantu provides
non-local versions of many constitutive laws for damage. Examples are for instance the material
Mazar and the material Marigo, that can be used in a non-local context. In order to use the
corresponding non-local formulation the user has to define the non-local material he wishes to
use in the text input file:

  material constitutive_law_non_local [

     name = material_namerho = value...]

where constitutive_law_non_local is the name of the non-local constitutive law, e.g. marigo_non_local.
In addition to the material the non-local neighborhood, that should be used for the averaging
process needs to be defined in the material file as well:

  non_local neighborhood_name  weight_function_type [

     radius = value
     ...

      weight_function weight_parameter [

        damage_limit = value
        ...

     ]

  ]

for the non-local averaging, e.g. base_wf, followed by the properties of the non-local neighborhood,
such as the radius, and the weight function parameters. It is important to notice that the non-local
neighborhood must have the same name as the material to which the neighborhood belongs! The
following two sections list the non-local constitutive laws and different type of weight functions
available in Akantu.
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4.6.1 Non-local constitutive laws

Let us consider a body having a volume V and a boundary Γ. The stress-strain relation for a
non-local damage model can be described as follows:

σ = (1 − d̄)D : ε (4.84)

with D the elastic moduli tensor, σ the stress tensor, ε the strain tensor and d̄ the non-local damage
variable. Note that this stres-strain relationship is similar to the relationship defined in Damage
model except d̄. The non-local damage model can be extended to the damage constitutive laws:
Marigo (Section 4.4.5) and Mazars (Section 4.4.5).

The non-local damage variable d̄ is defined as follows:

d̄(x) =

∫
V

W(x, y)d(y)dV(y) (4.85)

with W(x, y) the weight function which averages local damage variables to describe the non-local
interactions. A list of available weight functions and its functionalities in Akantu are explained in
the next section.

4.6.2 Non-local weight functions

The available weight functions in Akantu are follows:

◦ base_weight_function: This weight function averages local damage variables by using a bell-
shape function on spatial dimensions.

◦ damaged_weight_function: A linear-shape weight function is applied to average local damage
variables. Its slope is determined by damage variables. For example, the damage variables
for an element which is highly damaged are averaged over large spatial dimension (linear
function including a small slope).

◦ remove_damaged_weight_function: This weight function averages damage values by using a
bell-shape function as base_weight_function, but excludes elements which are fully damaged.

◦ remove_damaged_with_damage_rate_weight_function: A bell-shape function is applied to aver-
age local damage variables for elements having small damage rates.

◦ stress_based_weight_function: Non local integral takes stress states, and use the states to
construct weight function: an ellipsoid shape. Detailed explanations of this weight function
are given in Giry et al.: Stress-based nonlocal damage model IJSS, 48, 2011.

4.7 Adding a New Constitutive Law

There are several constitutive laws in Akantu as described in the previous Section 4.4. It is also
possible to use a user-defined material for the simulation. These materials are referred to as
local materials since they are local to the example of the user and not part of the Akantu library.
To define a new local material, two files ( material_XXX.hh and material_XXX.cc ) have to be
provided where XXX is the name of the new material. The header file material_XXX.hh defines
the interface of your custom material. Its implementation is provided in the material_XXX.cc .
The new law must inherit from the Material class or any other existing material class. It is
therefore necessary to include the interface of the parent material in the header file of your local
material and indicate the inheritance in the declaration of the class:
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/* ---------------------------------------------------------------------- */

#include "material.hh"
/* ---------------------------------------------------------------------- */

#ifndef __AKANTU_MATERIAL_XXX_HH__
#define __AKANTU_MATERIAL_XXX_HH__

namespace akantu {

class MaterialXXX : public Material {

/// declare here the interface of your material

};

In the header file the user also needs to declare all the members of the new material. These include
the parameters that a read from the material input file, as well as any other material parameters
that will be computed during the simulation and internal variables.

In the following the example of adding a new damage material will be presented. In this
case the parameters in the material will consist of the Young’s modulus, the Poisson coefficient,
the resistance to damage and the damage threshold. The material will then from these values
compute its Lamé coefficients and its bulk modulus. Furthermore, the user has to add a new
internal variable damage in order to store the amount of damage at each quadrature point in each
step of the simulation. For this specific material the member declaration inside the class will look
as follows:

class LocalMaterialDamage : public Material {

/// declare constructors/destructors here

/// declare methods and accessors here

  /* -------------------------------------------------------------------- */

  /* Class Members                                                        */

  /* -------------------------------------------------------------------- */

  AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Damage, damage, Real);
private:

  /// the young modulus

  Real E;

  /// Poisson coefficient

  Real nu;

  /// First Lame coefficient

  Real lambda;

  /// Second Lame coefficient (shear modulus)

  Real mu;

  /// resistance to damage

  Real Yd;

  /// damage threshold

  Real Sd;

  /// Bulk modulus
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  Real kpa;

  /// damage internal variable

  InternalField<Real> damage;

};

In order to enable to print the material parameters at any point in the user’s example file using
the standard output stream by typing:

for (UInt m = 0; m  < model.getNbMaterials(); ++m)
  std::cout << model.getMaterial(m) << std::endl;

the standard output stream operator has to be redefined. This should be done at the end of the
header file:

class LocalMaterialDamage : public Material {

  /// declare here the interace of your material

}:

/* ---------------------------------------------------------------------- */

/* inline functions                                                       */

/* ---------------------------------------------------------------------- */

/// standard output stream operator

inline std::ostream & operator <<(std::ostream & stream, const 
LocalMaterialDamage & _this)

{

  _this.printself(stream);

  return stream;
}

However, the user still needs to register the material parameters that should be printed out. The
registration is done during the call of the constructor. Like all definitions the implementation of
the constructor has to be written in the material_XXX.cc file. However, the declaration has to be
provided in the material_XXX.hh file:

class LocalMaterialDamage : public Material {
  /* -------------------------------------------------------------------- */

  /* Constructors/Destructors                                             */

  /* -------------------------------------------------------------------- */

public:

  LocalMaterialDamage(SolidMechanicsModel & model, const ID & id = "");
};

The user can now define the implementation of the constructor in the material_XXX.cc file:

/* ---------------------------------------------------------------------- */

#include "local_material_damage.hh"
#include "solid_mechanics_model.hh"

namespace akantu {

/* ---------------------------------------------------------------------- */

LocalMaterialDamage::LocalMaterialDamage(SolidMechanicsModel & model,

           const ID & id)  :
  Material(model, id),

  damage("damage", *this) {
  AKANTU_DEBUG_IN();
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  this->registerParam("E", E, 0., _pat_parsable, "Young’s modulus");
  this->registerParam("nu", nu, 0.5, _pat_parsable, "Poisson’s ratio");
  this->registerParam("lambda", lambda, _pat_readable, "First Lame coefficient

");

  this->registerParam("mu", mu, _pat_readable, "Second Lame coefficient");
  this->registerParam("kapa", kpa, _pat_readable, "Bulk coefficient");
  this->registerParam("Yd", Yd,   50., _pat_parsmod);
  this->registerParam("Sd", Sd, 5000., _pat_parsmod);

  damage.initialize(1);

  AKANTU_DEBUG_OUT();

}

During the intializer list the reference to the model and the material id are assigned and the
constructor of the internal field is called. Inside the scope of the constructor the internal values
have to be initialized and the parameters, that should be printed out, are registered with the
function: registerParam :

void registerParam(name of the parameter (key in the material file),
       member variable,

       default value (optional parameter),
       access permissions,

       description);

The available access permissions are as follows:

◦ _pat_internal : Parameter can only be output when the material is printed.

◦ _pat_writable : User can write into the parameter. The parameter is output when the
material is printed.

◦ _pat_readable : User can read the parameter. The parameter is output when the material
is printed.

◦ _pat_modifiable : Parameter is writable and readable.

◦ _pat_parsable : Parameter can be parsed, i.e. read from the input file.

◦ _pat_parsmod : Parameter is modifiable and parsable.

In order to implement the new constitutive law the user needs to specify how the additional
material parameters, that are not defined in the input material file, should be calculated. Fur-
thermore, it has to be defined how stresses and the stable time step should be computed for the
new local material. In the case of implicit simulations, in addition, the computation of the tangent
stiffness needs to be defined. Therefore, the user needs to redefine the following functions of the
parent material:

void initMaterial();

// for explicit and implicit simulations void

computeStress(ElementType el_type, GhostType ghost_type = _not_ghost);

// for implicit simulations

void computeTangentStiffness(const ElementType & el_type,
           Array<Real> & tangent_matrix,
           GhostType ghost_type = _not_ghost);

// for explicit and implicit simulations

Real getStableTimeStep(Real h, const Element & element);
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In the following a detailed description of these functions is provided:

◦ initMaterial : This method is called after the material file is fully read and the elements
corresponding to each material are assigned. Some of the frequently used constant parame-
ters are calculated in this method. For example, the Lamé constants of elastic materials can
be considered as such parameters.

◦ computeStress : In this method, the stresses are computed based on the constitutive law
as a function of the strains of the quadrature points. For example, the stresses for the elastic
material are calculated based on the following formula:

σ = λtr(ε)I + 2µε (4.86)

Therefore, this method contains a loop on all quadrature points assigned to the material
using the two macros:

MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN

MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END

    MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(element_type);

    // sigma <- f(grad_u)

    MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;

  

Note: The strain vector in Akantu contains the values of ∇u, i.e. it is really the displacement
gradient,

◦ computeTangentStiffness : This method is called when the tangent to the stress-strain
curve is desired (see Fig 4.16). For example, it is called in the implicit solver when the
stiffness matrix for the regular elements is assembled based on the following formula:

K =

∫
BTD(ε)B (4.87)

Therefore, in this method, the tangent matrix (D) is computed for a given strain.

Note: The tangent matrix is a 4th order tensor which is stored as a matrix in Voigt notation.

Figure 4.16: Tangent to the stress-strain curve.
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◦ getCelerity : The stability criterion of the explicit integration scheme depend on the fastest
wave celerity (4.21). This celerity depend on the material, and therefore the value of this
velocity should be defined in this method for each new material. By default, the fastest wave
speed is the compressive wave whose celerity can be defined in getPushWaveSpeed .

Once the declaration and implementation of the new material has been completed, this material
can be used in the user’s example by including the header file:

#include "material_XXX.hh"

For existing materials, as mentioned in Section 4.4, by default, the materials are initialized inside
the method initFull . If a local material should be used instead, the initialization of the material
has to be postponed until the local material is registered in the model. Therefore, the model is
initialized with the boolean for skipping the material initialization equal to true:

/// model initialization

model.initFull(_analysis_method = _explicit_lumped_mass);

Once the model has been initialized, the local material needs to be registered in the model:

model.registerNewCustomMaterials<XXX>("name_of_local_material");

Only at this point the material can be initialized:

model.initMaterials();

A full example for adding a new damage law can be found in examples/new_material .

4.7.1 Adding a New Non-Local Constitutive Law

In order to add a new non-local material we first have to add the local constitutive law in Akantu
(see above). We can then add the non-local version of the constitutive law by adding the two files
( material_XXX_non_local.hh and material_XXX_non_local.cc ) where XXX is the name of the
corresponding local material. The new law must inherit from the two classes, non-local parent
class, such as the MaterialNonLocal class, and from the local version of the constitutive law, i.e.
MaterialXXX . It is therefore necessary to include the interface of those classes in the header file
of your custom material and indicate the inheritance in the declaration of the class:

/* ---------------------------------------------------------------------- */

#include "material_non_local.hh" // the non-local parent
#include "material_XXX.hh"
/* ---------------------------------------------------------------------- */

#ifndef __AKANTU_MATERIAL_XXX_HH__
#define __AKANTU_MATERIAL_XXX_HH__

namespace akantu {

class MaterialXXXNonLocal : public MaterialXXX,
                            public MaterialNonLocal {

/// declare here the interface of your material

};

As members of the class we only need to add the internal fields to store the non-local quantities,
which are obtained from the averaging process:

/* -------------------------------------------------------------------------- 

*/

/* Class members                                                              

*/
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/* -------------------------------------------------------------------------- 

*

protected:

  InternalField<Real> grad_u_nl;

The following four functions need to be implemented in the non-local material:

  /// initialization of the material

  void initMaterial();
  /// loop over all element and invoke stress computation

  virtual void computeNonLocalStresses(GhostType ghost_type);
  /// compute stresses after local quantities have been averaged

  virtual void computeNonLocalStress(ElementType el_type, GhostType ghost_type
)

  /// compute all local quantities

  void computeStress(ElementType el_type, GhostType ghost_type);

In the intialization of the non-local material we need to register the local quantity for the averaging
process. In our example the internal field grad_u_nl is the non-local counterpart of the gradient of
the displacement field (grad_u_nl):

  void MaterialXXXNonLocal::initMaterial() {
    MaterialXXX::initMaterial();

    MaterialNonLocal::initMaterial();

    /// register the non-local variable in the manager

    this->model->getNonLocalManager().registerNonLocalVariable(this->grad_u.
getName(), this->grad_u_nl.getName(), spatial_dimension * 
spatial_dimension);

}

The function to register the non-local variable takes as parameters the name of the local internal
field, the name of the non-local counterpart and the number of components of the field we want
to average. In the computeStress we now need to compute all the quantities we want to average.
We can then write a loop for the stress computation in the function computeNonLocalStresses and
then provide the constitutive law on each integration point in the function computeNonLocalStress.
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Structural Mechanics Model

Static structural mechanics problems can be handled using the class StructuralMechanicsModel .
So far, Akantu provides 2D and 3D Bernoulli beam elements [16]. This model is instanti-
ated for a given Mesh , as for the SolidMechanicsModel . The model will create its own
FEEngine object to compute the interpolation, gradient, integration and assembly operations.
The StructuralMechanicsModel constructor is called in the following way:

  StructuralMechanicsModel model(mesh, spatial_dimension);

where mesh is a Mesh object defining the structure for which the equations of statics are to be
solved, and spatial_dimension is the dimensionality of the problem. If spatial_dimension

is omitted, the problem is assumed to have the same dimensionality as the one specified by the
mesh.

Note 1: Dynamic computations are not supported to date.
Note 2: Structural meshes are created and loaded as described in Section 2.4 with _miot_gmsh_struct

instead of _miot_gmsh :

  Mesh mesh;

  mesh.read("structural_mesh.msh", _miot_gmsh_struct);

This model contains at least the following Arrays :

blocked_dofs contains a Boolean value for each degree of freedom specifying whether that de-
gree is blocked or not. A Dirichlet boundary condition can be prescribed by setting the
blocked_dofs value of a degree of freedom to true . The displacement is computed for all
degrees of freedom for which the blocked_dofs value is set to false . For the remaining
degrees of freedom, the imposed values (zero by default after initialization) are kept.

displacement_rotation contains the generalized displacements (i.e. displacements and rotations)
of all degrees of freedom. It can be either a computed displacement for free degrees of
freedom or an imposed displacement in case of blocked ones (u in the following).

external_force contains the generalized external forces (forces and moments) applied to the nodes
( fext in the following).

internal_force contains the generalized internal forces (forces and moments) applied to the nodes
( fint in the following).

An example to help understand how to use this model will be presented in the next section.

5.1 Model Setup

5.1.1 Initialization

The easiest way to initialize the structural mechanics model is:
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  model.initFull();

The method initFull computes the shape functions, initializes the internal vectors mentioned
above and allocates the memory for the stiffness matrix, unlike the solid mechanics model, its
default argument is _static .

Material properties are defined using the StructuralMaterial structure described in Ta-
ble 5.1. Such a definition could, for instance, look like

  StructuralMaterial mat1;

  mat.E=3e10;

  mat.I=0.0025;

  mat.A=0.01;

Field Description

E Young’s modulus
A Cross section area
I Second cross sectional moment of inertia (for 2D elements)
Iy I around beam y–axis (for 3D elements)
Iz I around beam z–axis (for 3D elements)
GJ Polar moment of inertia of beam cross section (for 3D elements)

Table 5.1: Material properties for structural elements defined in the class StructuralMaterial .

Materials can be added to the model’s element_material vector using

  model.addMaterial(mat1);

They are successively numbered and then assigned to specific elements.

for (UInt i = 0; i < nb_element_mat_1; ++i) {
    model.getElementMaterial(_bernoulli_beam_2)(i,0) = 1;

  }

5.1.2 Setting Boundary Conditions

As explained before, the Dirichlet boundary conditions are applied through the array
blocked_dofs. Two options exist to define Neumann conditions. If a nodal force is ap-
plied, it has to be directly set in the array force_momentum. For loads distributed along the
beam length, the method computeForcesFromFunction integrates them into nodal forces. The
method takes as input a function describing the distribution of loads along the beam and a
functor BoundaryFunctionType specifing if the function is expressed in the local coordinates
( _bft_traction_local ) or in the global system of coordinates ( _bft_traction ).

 static void lin_load(double * position, double * load,
          Real * normal, UInt surface_id){
  memset(load,0,sizeof(Real)*3);
  load[1] = position[0]*position[0]-250;

}

int main(int argc, char *argv[]){
...

model.computeForcesFromFunction<_bernoulli_beam_2>(lin_load,

                                                   _bft_traction_local);

...}
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5.2 Static Analysis

The StructuralMechanicsModel class can perform static analyses of structures. In this case, the
equation to solve is the same as for the SolidMechanicsModel used for static analyses

Ku = fext , (5.1)

where K is the global stiffness matrix, u the generalized displacement vector and fext the vector of
generalized external forces applied to the system.

To solve such a problem, the static solver of the StructuralMechanicsModel object is used.
First a model has to be created and initialized.

  StructuralMechanicsModel model(mesh);

  model.initFull();

◦ model.initFull initializes all internal vectors to zero.

Once the model is created and initialized, the boundary conditions can be set as explained
in Section 5.1.2. Boundary conditions will prescribe the external forces or moments for the free
degrees of freedom fext and displacements or rotations for the others. To completely define the
system represented by equation (5.1), the global stiffness matrix K must be assembled.

  model.assembleStiffnessMatrix();

The computation of the static equilibrium is performed using the same Newton-Raphson
algorithm as described in Section 4.2.

Note: To date, StructuralMechanicsModel handles only constitutively and geometrically linear
problems, the algorithm is therefore guaranteed to converge in two iterations.

  model.updateResidual();

  model.solve();

◦ model.updateResidual assembles the internal forces and removes them from the external
forces.

◦ model.solve solves the Equation (5.1). The increment vector of the model will contain the
new increment of displacements, and the displacement_rotation vector is also updated to
the new displacements.

At the end of the analysis, the final solution is stored in the displacement_rotation vec-
tor. A full example of how to solve a structural mechanics problem is presented in the code
examples/structural_mechanics/bernoulli_beam_2_example.cc . This example is composed
of a 2D beam, clamped at the left end and supported by two rollers as shown in Figure 5.1. The
problem is defined by the applied load q = 6 kN m−1, moment M̄ = 3.6 kN m, moments of inertia
I1 = 250 000 cm4 and I2 = 128 000 cm4 and lengths L1 = 10 m and L2 = 8 m. The resulting rotations
at node two and three are ϕ2 = 0.001 167 and ϕ3 = −0.000 771.

q

I1 I2

M̄

1 2 3

Figure 5.1: 2D beam example





Chapter 6

Heat Transfer Model

The heat transfer model is a specific implementation of the Model interface dedicated to handle
the dynamic heat equation.

6.1 Theory

The strong form of the dynamic heat equation can be expressed as

ρcvṪ + ∇ · κ∇T = b (6.1)

with T the scalar temperature field, cv the specific heat capacity, ρ the mass density, κ the conduc-
tivity tensor, and b the heat generation per unit of volume. The discretized weak form with a finite
number of elements is

∀i
∑

j

(∫
Ω

ρcvN jNidΩ

)
Ṫ j −

∑
j

(∫
Ω

κ∇N j∇NidΩ

)
T j = −

∫
Γ

Niq · ndΓ +

∫
Ω

bNidΩ (6.2)

with i and j the node indices, n the normal field to the surface Γ = ∂Ω. To simplify, we can define
the capacity and the conductivity matrices as

Ci j =

∫
Ω

ρcvN jNidΩ and Ki j = −

∫
Ω

κ∇N j∇NidΩ (6.3)

and the system to solve can be written

C · Ṫ = Qext
− K · T , (6.4)

with Qext the consistent heat generated.

6.2 Using the Heat Transfer Model

A material file name has to be provided during initialization. Currently, the HeatTransferModel
object uses dynamic analysis with an explicit time integration scheme. It can simply be created
like this

  HeatTransferModel model(mesh, spatial_dimension);

while an existing mesh has been used (see 2.4). Then the model object can be initialized with:

  model.initFull()

This function will load the material properties, and allocate / initialize the nodes and element
Array s More precisely, the heat transfer model contains 4 Arrays :
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temperature contains the nodal temperature T (zero by default after the initialization).

temperature_rate contains the variations of temperature Ṫ (zero by default after the initialization).

blocked_dofs contains a Boolean value for each degree of freedom specifying whether the degree
is blocked or not. A Dirichlet boundary condition (Td) can be prescribed by setting the
blocked_dofs value of a degree of freedom to true . The temperature and the tempera-
ture_rate are computed for all degrees of freedom where the blocked_dofs value is set to
false . For the remaining degrees of freedom, the imposed values (zero by default after
initialization) are kept.

external_heat_rate contains the external heat generations. Qext on the nodes.

internal_heat_rate contains the internal heat generations. Qint = −K · T on the nodes.

Only a single material can be specified on the domain. A material text file (e.g., material.dat)
provides the material properties as follows:

  model heat_transfer_model [

    capacity = XXX

    density = XXX

    conductivity = [XXX ... XXX]

  ]

where the capacity and density are scalars, and the conductivity is specified as a 3×3 tensor.

6.2.1 Explicit Dynamic

The explicit time integration scheme in Akantu uses a lumped capacity matrix C (reducing the
computational cost, see Chapter 4). This matrix is assembled by distributing the capacity of each
element onto its nodes. Therefore, the resulting C is a diagonal matrix stored in the capacity

Array of the model.

  model.assembleCapacityLumped();

Note: Currently, only the explicit time integration with lumped capacity matrix is implemented within
Akantu. The explicit integration scheme is Forward Euler [5].

◦ Predictor: Tn+1 = Tn + ∆tṪn

◦ Update residual: Rn+1 =
(
Qext

n+1
− KTn+1

)
◦ Corrector : Ṫn+1 = C−1Rn+1

The explicit integration scheme is conditionally stable. The time step has to be smaller than
the stable time step, and it can be obtained in Akantu as follows:

  time_step = model.getStableTimeStep();

The stable time step is defined as:

∆tcrit = 2∆x2 ρcv

|| κ ||∞
(6.5)

where ∆x is the characteristic length (e.g., the inradius in the case of linear triangle element), ρ
is the density, κ is the conductivity tensor, and cv is the specific heat capacity. It is necessary to
impose a time step which is smaller than the stable time step, for instance, by multiplying the
stable time step by a safety factor smaller than one.

  const Real safety_time_factor = 0.1;
  Real applied_time_step = time_step * safety_time_factor;
  model.setTimeStep(applied_time_step);
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The following loop allows, for each time step, to update the temperature , residual and
temperature_rate fields following the previously described integration scheme.

  for (UInt s = 1; (s-1)*applied_time_step < total_time; ++s) {
    model.solveStep();

  }

An example of explicit dynamic heat propagation is presented in
examples/heat_transfer/explicit_heat_transfer.cc .
This example consists of a square 2D plate of 1 m2 having an initial temperature of 100 K every-
where but a none centered hot point maintained at 300 K. Figure 6.1 presents the geometry of
this case. The material used is a linear fictitious elastic material with a density of 8940 kg/m3, a
conductivity of 401 W m−1 K−1 and a specific heat capacity of 385 J K−1 kg−1. The time step used is
0.12 s.

Figure 6.1: Initial temperature field (left) and after 15000 time steps = 30 minutes (right). The lines
represent iso-surfaces.





Chapter 7

Input/Output

7.1 Input file

The text input file of a simulation should be precised using the method initialize which will
instantiate the static Parser object of Akantu. This section explains how to manipulate Parser
objects to input data in Akantu.

int main(int argc, char *argv[]) {
  initialize("input_files.dat", argc, argv);

  ...

7.1.1 Akantu Parser

Akantu file parser has a tree organization.

◦ Parser , the root of the tree, can be accessed using

Parser & parser = getStaticParser();

◦ ParserSection , branch of the tree, contains map a of sub-sections ( SectionType ,
ParserSection ) and a ParserSection * pointing to the parent section. The user sec-
tion of the input file can directly be accessed by

const ParserSection & usersect = getUserParser();

◦ ParserParameter , the leaf of the tree, carries data of the input file which can be casted to
the correct type with

Real mass = usersect.getParameter("mass");

or used directly within an expression

Real dead_weight = 9.81 * usersect.getParameterValue<Real>("mass");

7.1.2 Grammar

The structure of text input files consists of different sections containing a list of parameters. As
example, the file parsed in the previous section will look like

  user parameters [

     mass = 10.5

  ]
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Basically every standard arithmetic operations can be used inside of input files as well as the
constant pi and e and the exponent operator ˆ . Operations between ParserParameter are
also possible with the convention that only parameters of the current and the parent sections are
available. Vector and Matrix can also be read according to the NumPy [17] writing convention
(a.e. cauchy_stress_tensor = [[σxx, σxy],[σyx,σyy]]). An example illustrating how to parse the
following input file can be found in example\io\parser\example_parser.cc .

user parameters [

   spatial_dimension = 2

   mesh_file = swiss_cheese.msh

   inner_holes = holes

   outter_crust = crust

   lactostatic_p = 30e3

   stress = [[lactostatic_p,0],[0,lactostatic_p]]

   max_nb_iterations = 100

   precision = 1e-9

]

7.1.3 Material section

The input file should also be used to specify material characteristics (constitutive behavior
and material properties). The dedicated material section is then read by initFull method of
SolidMechanicsModel which initializes the different materials specified with the following con-
vention:

  material constitutive_law <optional flavor> [

     name = value
     rho = value
     ...

  ]

where constitutive_law is the adopted constitutive law, followed by the material properties listed
one by line in the bracket (e.g., name and density rho ). Some constitutive laws can also have an
optional flavor. More information can be found in sections relative to material constitutive laws 4.4
or in Appendix B.

7.2 Output data

7.2.1 Generic data

In this chapter, we address ways to get the internal data in human-readable formats. The models
in Akantu handle data associated to the mesh, but this data can be split into several Arrays . For
example, the data stored per element type in a ElementTypeMapArray is composed of as many
Array s as types in the mesh.

In order to get this data in a visualization software, the models contain a object to dump VTK
files. These files can be visualized in software such as ParaView [18], ViSit [19] or Mayavi [20].

The internal dumper of the model can be configured to specify which data fields are to be
written. This is done with the addDumpField method. By default all the files are generated in a
folder called paraview/

  model.setBaseName("output"); // prefix for all generated files

  model.addDumpField("displacement");

  model.addDumpField("stress");

  ...
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key type support

displacement Vector<Real> nodes
mass Vector<Real> nodes
velocity Vector<Real> nodes
acceleration Vector<Real> nodes
force Vector<Real> nodes
residual Vector<Real> nodes
increment Vector<Real> nodes
blocked_dofs Vector<bool> nodes
partitions Real elements
material_index variable elements
strain Matrix<Real> quadrature points
Green strain Matrix<Real> quadrature points
principal strain Vector<Real> quadrature points
principal Green strain Vector<Real> quadrature points
grad_u Matrix<Real> quadrature points
stress Matrix<Real> quadrature points
Von Mises stress Real quadrature points
material_index variable quadrature points

Table 7.1: List of dumpable fields for SolidMechanicsModel .

  model.dump()

The fields are dumped with the number of components of the memory. For example, in
2D, the memory has Vector s of 2 components, or the 2nd order tensors with 2 × 2 components.
This memory can be dealt with addDumpFieldVector which always dumps Vector s with 3
components or addDumpFieldTensor which dumps 2nd order tensors with 3 × 3 components
respectively. The routines addDumpFieldVector and addDumpFieldTensor were introduced
because of ParaView which mostly manipulate 3D data.

Those fields which are stored by quadrature point are modified to be seen in the VTK file as
elemental data. To do this, the default is to average the values of all the quadrature points.

The list of fields depends on the models (for SolidMechanicsModel see table 7.1).

7.2.2 Cohesive elements’ data

Cohesive elements and their relative data can be easily dumped thanks to a specific dumper
contained in SolidMechanicsModelCohesive . In order to use it, one has just to add the string
"cohesive elements" when calling each method already illustrated. Here is an example on how
to dump displacement and damage:

  model.setBaseNameToDumper("cohesive elements", "cohesive_elements_output");

  model.addDumpFieldVectorToDumper("cohesive elements", "displacement");

  model.addDumpFieldToDumper("cohesive elements", "damage");

  ...

  model.dump("cohesive elements");

Fragmentation data

Whenever the SolidMechanicsModelCohesive is used, it is possible to dump additional data
about the fragments that get formed in the simulation both in serial and parallel. This task is



64 CHAPTER 7. INPUT/OUTPUT

carried out by the FragmentManager class, that takes care of computing the following quantities
for each fragment:

◦ index;

◦ mass;

◦ moments of inertia;

◦ velocity;

◦ number of elements.

These computations can be realized at once by calling the function computeAllData , or individ-
ually by calling the other public functions of the class. The data can be dumped to be visualized
in Paraview, or can be accessed within the simulation. An example of usage is:

  FragmentManager fragment_manager(model);

  fragment_manager.buildAllData();

  ...

  model.addDumpField("fragments");       // this field contains the indices

  model.addDumpField("fragments mass");

  model.addDumpField("moments of inertia");

  model.addDumpField("elements per fragment");

  ...

  for (UInt step = 1; step <= total_steps; ++step) {
    ...

    fragment_manager.buildAllData();

    model.dump();

  }

  ...

  const Array<Real> & fragment_velocities = fragment_manager.getVelocity();
  ...

At the end of this example the velocities of the fragments are accessed with a reference to a
const Array<Real> . The size of this array is the number of fragments, and its number of
components is the spatial dimension in this case.

7.2.3 Advanced dumping

Arbitrary fields

In addition to the predetermined fields from the models and materials, the user can add any data
to a dumper as long as the support is the same. That is to say data that have the size of the full
mesh on if the dumper is dumping the mesh, or of the size of an element group if it is a filtered
dumper.

For this the easiest is to use the “external” fields register functions
The simple case force nodal and elemental data are to pass directly the data container itself if

it as the good size.

◦ For nodal fields :

  Array<T> nodal_data(nb_nodes, nb_component);

  ...

  model.addDumpFieldExternal("my_field", nodal_data);
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◦ For elemental fields :

  ElementTypeMapArray<T> elem_data;

  ...

  model.addDumpFieldExternal("my_field", elem_data);

If some changes have to be applied on the data as for example a padding for ParaView vectors,
this can be done by using the field interface.

  model.addDumpFieldExternal(const std::string & field_name,
                             dumper::Field * field);

An example of code presenting this interface is present in the examples/io/dumper . This
interface is part of the Dumpable class from which the Mesh inherits.

Creating a new dumper

You can also create you own dumpers, Akantu uses a third-party library in order to write the
output files, IOHelper . Akantu supports the ParaView format and a Text format defined by
IOHelper .

This two files format are handled by the classes DumperParaview and DumperText .
In order to use them you can instantiate on of this object in your code. This dumper have

a simple interface. You can register a mesh registerMesh , registerFilteredMesh or a field,
registerField .

An example of code presenting this low level interface is present in the examples/io/dumper .
The different types of Field that can be created are present in the source folder src/io/dumper .
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Parallel Computation

This section explains how to launch a parallel computation. The strategy adopted by Akantu
uses a mesh partitioning where elements are mapped to processors. Mesh partitions are then
distributed to available processors by adequate routines as will be described below. The sequence
of additional operations to be performed by the user are:

◦ Initializing the parallel context

◦ Partitioning the mesh

◦ Distributing mesh partitions

After these steps, the Model object proceeds with the interprocess communication automat-
ically without the user having to explicitly take care of them. In what follows we show how it
works on a SolidMechanics model.

8.1 Initializing the Parallel Context

The user must initialize Akantu by forwarding the arguments passed to the program by using
the function initialize , and close Akantu instances at the end of the program by calling the
finalize function.

Note: This step does not change from the sequential case as it was stated in Section 2.3. It only gives a
additional motivation in the parallel/MPI context.

The initialize function builds a StaticCommunicator object responsible for handling the
interprocess communications later on. The StaticCommunicator can, for instance, be used to ask
the total number of declared processors available for computations as well as the process rank
through the functions getNbProc and whoAmI respectively.

An example of the initializing sequence and basic usage of the StaticCommunicator is:

int main(int argc, char *argv[]) {
  initialize("material.dat", argc, argv);

  const auto & comm = Communicator::getStaticCommunicator();
  Int psize = comm.getNbProc();
  Int prank = comm.whoAmI();

  ...

  finalize();

}
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8.2 Partitioning and distributing the Mesh

The mesh is partitioned after the correct initialization of the processes playing a role in the
computation. We assume that a Mesh object is constructed as presented in Section 2.4. Then it
can be distributed among the different processes. At the moment, the only partitioner available is
MeshPartitionScotch which is used by the function distribute using the Scotch [21] program.
This is achieved by the following code:

  Mesh mesh(spatial_dimension);

  if(prank == 0) {
    mesh.read("my_mesh.msh");

  }

  mesh.distribute();

The algorithm that partition the mesh needs the generation of a random distribution of values.
Therefore, in order to run several time a simulation with the same partition of the mesh, the seed
has to be set manually. This can be done either by adding the following line to the input file outside
the material parameters environments:

  seed = 1

where the value 1.0 can be substituted with any number, or by setting it directly in the code with
the command:

  RandGenerator:: seed(1)

The latter command, with empty brackets, can be used to check the value of the seed used in the
simulation.

Note: Only the processor of rank 0 should load the mesh file to partition it. Nevertheless, the Mesh
object must by declared for all processors since the mesh distribution will store mesh pieces to that object.

An example of an explicit dynamic 2D bar in compression in a parallel context can be found
in examples/parallel_2d .

8.3 Launching a Parallel Program

Using MPI a parallel run can be launched from a shell using the command

  mpirun -np #procs program_name parameter1 parameter2 ...
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Python interface

Akantu as a python interface which allows to implement a finite element case entirely in the
Python language. The interface is currently in beta version and bugs (including memory leaks)
can be expected.

The philosophy of the python wrappers is that it should follow, as much as possible, the C++

interface. This is made possible thanks to the software which can port C++ interfaces to Python.
However, the possibilities of the Python language have some restrictions which do not allow
the concept of template. For this reason the templated classes and methods are currently hardly
supported in the Akantu Python interface (some are, but without any warranty that the interface
shall not change in a near future).

In order to use the python interface you want to import the akantu module which is possibly
located in directory where you built or where you installed Akantu. The easiest way is to source
the file akantu_environement.sh in your terminal environment:

  source AKANTU_BUILD_DIR/akantu_environement.sh

or for an installed akantu version:

  source AKANTU_INSTALL_DIR/share/akantuVERSION/akantu_environement.sh

Then, you can create a Python script, like script.py which starts with:

  import akantu

Then, you can write the initialization sequence just like for the C++ case:

  akantu.initialize(’materials.dat’) spatial_dimension = 2

  mesh = akantu.Mesh(spatial_dimension) mesh.read(’mesh.msh’)

  model = akantu.SolidMechanicsModel(mesh)

  model.initFull(_analysis_method = akantu._static)

Then for the dumpers declaration:

  model.setBaseName("example") model.addDumpFieldVector("displacement")

  model.addDumpFieldVector("force") model.addDumpField("boundary")

  model.addDumpField("strain") model.addDumpField("stress")

  model.addDumpField("blocked_dofs")

The Akantu arrays can be retrieved at all time. For convenience there is an automatic trans-
typing operator which allows to use Akantu Array, Vectors and Matrix as mere Numpys.

  displacement = model.getDisplacement()

There is no copy made and the Numpy vectors are wrapped around Akantu’s memory pool.

  displacement[:,:] = 1.

  displacement[0,1] = 10.

Also to assign an entire vector to another the ’[]’ operator must be used:
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  result = numpy.linspace(0.,1.,100)

  # This works

  displacement[:] = result[:]

  # This does not

  displacement = result

Then you can solve the problem for instance with:

  model.solveStaticDisplacement(1e-10,2);

And dump to Paraview:

  model.dump()

Do not forget to finalize at the end of the script:

  akantu.finalize()

Finally the python script can be launched with:

  python ./script.py

Warning! : We recall once more that the Python interface is in beta state and is provided only
for its nice services: it avoids recompilation of akantu when coding the main function. Several
preliminary examples are provided in the examples directory where it is described how to specify
boundary conditions and also constitutive behavior.



Appendix A

Shape Functions

Schmatic overview of all the element types defined in Akantu is described in Section 3.2. In this
appendix, more detailed information (shape function, location of Gaussian quadrature points, and
so on) of each of these types is listed. For each element type, the coordinates of the nodes are given
in the isoparametric frame of reference, together with the shape functions (and their derivatives) on
these respective nodes. Also all the Gaussian quadrature points within each element are assigned
(together with the weight that is applied on these points). The graphical representations of all the
element types can be found in Section 3.2.

A.1 1D-Shape Functions

A.1.1 Segment 2

Element properties

Node (i) Coord. (ξ) Shape function (Ni) Derivative (∂Ni/∂ξ)

1 −1 1
2 (1 − ξ) −

1
2

2 1 1
2 (1 + ξ) 1

2

Gaussian quadrature points

Coord. (ξ) 0

Weight 2

A.1.2 Segment 3

Element properties

Node (i) Coord. (ξ) Shape function (Ni) Derivative (∂Ni/∂ξ)

1 −1 1
2ξ (ξ − 1) ξ − 1

2

2 1 1
2ξ (ξ + 1) ξ + 1

2

3 0 1 − ξ2
−2ξ

Gaussian quadrature points

Coord. (ξ) −1/
√

3 1/
√

3

Weight 1 1
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A.2 2D-Shape Functions

A.2.1 Triangle 3

Element properties

Node (i) Coord.
(
ξ , η

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η

)
1 ( 0 , 0 ) 1 − ξ − η ( −1 , −1 )

2 ( 1 , 0 ) ξ ( 1 , 0 )

3 ( 0 , 1 ) η ( 0 , 1 )

Gaussian quadrature points

Coord.
(
ξ , η

) (
1
3 ,

1
3

)
Weight 1

2

A.2.2 Triangle 6

Element properties

Node (i) Coord.
(
ξ , η

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η

)
1 ( 0 , 0 ) −

(
1 − ξ − η

) (
1 − 2

(
1 − ξ − η

)) (
1 − 4

(
1 − ξ − η

)
, 1 − 4

(
1 − ξ − η

) )
2 ( 1 , 0 ) −ξ (1 − 2ξ) ( 4ξ − 1 , 0 )

3 ( 0 , 1 ) −η
(
1 − 2η

) (
0 , 4η − 1

)
4

(
1
2 , 0

)
4ξ

(
1 − ξ − η

) (
4
(
1 − 2ξ − η

)
, −4ξ

)
5

(
1
2 ,

1
2

)
4ξη

(
4η , 4ξ

)
6

(
0 , 1

2

)
4η

(
1 − ξ − η

) (
−4η , 4

(
1 − ξ − 2η

) )
Gaussian quadrature points

Coord.
(
ξ , η

) (
1
6 ,

1
6

) (
2
3 ,

1
6

) (
1
6 ,

2
3

)
Weight 1

6
1
6

1
6
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A.2.3 Quadrangle 4

Element properties

Node (i) Coord.
(
ξ , η

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η

)
1 ( −1 , −1 ) 1

4 (1 − ξ)
(
1 − η

) (
−

1
4

(
1 − η

)
, − 1

4 (1 − ξ)
)

2 ( 1 , −1 ) 1
4 (1 + ξ)

(
1 − η

) (
1
4

(
1 − η

)
, − 1

4 (1 + ξ)
)

3 ( 1 , 1 ) 1
4 (1 + ξ)

(
1 + η

) (
1
4

(
1 + η

)
, 1

4 (1 + ξ)
)

4 ( −1 , 1 ) 1
4 (1 − ξ)

(
1 + η

) (
−

1
4

(
1 + η

)
, 1

4 (1 − ξ)
)

Gaussian quadrature points

(
ξ , η

) (
−

1
√

3
, − 1

√
3

) (
1
√

3
, − 1

√
3

) (
1
√

3
, 1
√

3

) (
−

1
√

3
, 1
√

3

)
Weight 1 1 1 1

A.2.4 Quadrangle 8

Element properties

Node (i) Coord.
(
ξ , η

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η

)
1 ( −1 , −1 ) 1

4 (1 − ξ)
(
1 − η

) (
−1 − ξ − η

) (
1
4

(
1 − η

) (
2ξ + η

)
, 1

4 (1 − ξ)
(
ξ + 2η

) )
2 ( 1 , −1 ) 1

4 (1 + ξ)
(
1 − η

) (
−1 + ξ − η

) (
1
4

(
1 − η

) (
2ξ − η

)
, − 1

4 (1 + ξ)
(
ξ − 2η

) )
3 ( 1 , 1 ) 1

4 (1 + ξ)
(
1 + η

) (
−1 + ξ + η

) (
1
4

(
1 + η

) (
2ξ + η

)
, 1

4 (1 + ξ)
(
ξ + 2η

) )
4 ( −1 , 1 ) 1

4 (1 − ξ)
(
1 + η

) (
−1 − ξ + η

) (
1
4

(
1 + η

) (
2ξ − η

)
, − 1

4 (1 − ξ)
(
ξ − 2η

) )
5 ( 0 , −1 ) 1

2

(
1 − ξ2) (1 − η) (

−ξ
(
1 − η

)
, − 1

2

(
1 − ξ2) )

6 ( 1 , 0 ) 1
2 (1 + ξ)

(
1 − η2) (

1
2

(
1 − η2) , −η (1 + ξ)

)
7 ( 0 , 1 ) 1

2

(
1 − ξ2) (1 + η

) (
−ξ

(
1 + η

)
, 1

2

(
1 − ξ2) )

8 ( −1 , 0 ) 1
2 (1 − ξ)

(
1 − η2) (

−
1
2

(
1 − η2) , −η (1 − ξ)

)
Gaussian quadrature points

Coord.
(
ξ , η

)
( 0 , 0 )

( √
3
5 ,

√
3
5

) (
−

√
3
5 ,

√
3
5

) (
−

√
3
5 , −

√
3
5

) ( √
3
5 , −

√
3
5

)
Weight 64/81 25/81 25/81 25/81 25/81

Coord.
(
ξ , η

) (
0 ,

√
3
5

) (
−

√
3
5 , 0

) (
0 , −

√
3
5

) ( √
3
5 , 0

)
Weight 40/81 40/81 40/81 40/81
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A.3 3D-Shape Functions

A.3.1 Tetrahedron 4

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)
1 ( 0 , 0 , 0 ) 1 − ξ − η − ζ ( −1 , −1 , −1 )

2 ( 1 , 0 , 0 ) ξ ( 1 , 0 , 0 )

3 ( 0 , 1 , 0 ) η ( 0 , 1 , 0 )

4 ( 0 , 0 , 1 ) ζ ( 0 , 0 , 1 )

Gaussian quadrature points

Coord.
(
ξ , η , ζ

) (
1
4 ,

1
4 ,

1
4

)
Weight 1

6

A.3.2 Tetrahedron 10

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)

1 ( 0 , 0 , 0 )
(
1 − ξ − η − ζ

) (
1 − 2ξ − 2η − 2ζ

) ( 4ξ + 4η + 4ζ − 3 ,

4ξ + 4η + 4ζ − 3 ,

4ξ + 4η + 4ζ − 3 )

2 ( 1 , 0 , 0 ) ξ (2ξ − 1) ( 4ξ − 1 , 0 , 0 )

3 ( 0 , 1 , 0 ) η
(
2η − 1

) (
0 , 4η − 1 , 0

)
4 ( 0 , 0 , 1 ) ζ (2ζ − 1) ( 0 , 0 , 4ζ − 1 )

5
(

1
2 , 0 , 0

)
4ξ

(
1 − ξ − η − ζ

) (
4 − 8ξ − 4η − 4ζ , −4ξ , −4ξ

)
6

(
1
2 ,

1
2 , 0

)
4ξη

(
4η , 4ξ , 0

)
7

(
0 , 1

2 , 0
)

4η
(
1 − ξ − η − ζ

) (
−4η , 4 − 4ξ − 8η − 4ζ , −4η

)
8

(
0 , 0 , 1

2

)
4ζ

(
1 − ξ − η − ζ

) (
−4ζ , −4ζ , 4 − 4ξ − 4η − 8ζ

)
9

(
1
2 , 0 , 1

2

)
4ξζ ( 4ζ , 0 , 4ξ )

10
(

0 , 1
2 ,

1
2

)
4ηζ

(
0 , 4ζ , 4η

)
Gaussian quadrature points

Coord.
(
ξ , η , ζ

) (
(5−
√

5)
20 ,

(5−
√

5)
20 ,

(5−
√

5)
20

) (
(5+3

√
5)

20 ,
(5−
√

5)
20 ,

(5−
√

5)
20

)
Weight 1/24 1/24

Coord.
(
ξ , η , ζ

) (
(5−
√

5)
20 ,

(5+3
√

5)
20 ,

(5−
√

5)
20

) (
(5−
√

5)
20 ,

(5−
√

5)
20 ,

(5+3
√

5)
20

)
Weight 1/24 1/24
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A.3.3 Hexahedron 8

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)
1 ( −1 , −1 , −1 ) 1

8 (1 − ξ)
(
1 − η

)
(1 − ζ)

(
−

1
8

(
1 − η

)
(1 − ζ) , − 1

8 (1 − ξ) (1 − ζ) , − 1
8 (1 − ξ)

(
1 − η

) )
2 ( 1 , −1 , −1 ) 1

8 (1 + ξ)
(
1 − η

)
(1 − ζ)

(
1
8

(
1 − η

)
(1 − ζ) , − 1

8 (1 + ξ) (1 − ζ) , − 1
8 (1 + ξ)

(
1 − η

) )
3 ( 1 , 1 , −1 ) 1

8 (1 + ξ)
(
1 + η

)
(1 − ζ)

(
1
8

(
1 + η

)
(1 − ζ) , 1

8 (1 + ξ) (1 − ζ) , − 1
8 (1 + ξ)

(
1 + η

) )
4 ( −1 , 1 , −1 ) 1

8 (1 − ξ)
(
1 + η

)
(1 − ζ)

(
−

1
8

(
1 + η

)
(1 − ζ) , 1

8 (1 − ξ) (1 − ζ) , − 1
8 (1 − ξ)

(
1 + η

) )
5 ( −1 , −1 , 1 ) 1

8 (1 − ξ)
(
1 − η

)
(1 + ζ)

(
−

1
8

(
1 − η

)
(1 + ζ) , − 1

8 (1 − ξ) (1 + ζ) , 1
8 (1 − ξ)

(
1 − η

) )
6 ( 1 , −1 , 1 ) 1

8 (1 + ξ)
(
1 − η

)
(1 + ζ)

(
1
8

(
1 − η

)
(1 + ζ) , − 1

8 (1 + ξ) (1 + ζ) , 1
8 (1 + ξ)

(
1 − η

) )
7 ( 1 , 1 , 1 ) 1

8 (1 + ξ)
(
1 + η

)
(1 + ζ)

(
1
8

(
1 + η

)
(1 + ζ) , 1

8 (1 + ξ) (1 + ζ) , 1
8 (1 + ξ)

(
1 + η

) )
8 ( −1 , 1 , 1 ) 1

8 (1 − ξ)
(
1 + η

)
(1 + ζ)

(
−

1
8

(
1 + η

)
(1 + ζ) , 1

8 (1 − ξ) (1 + ζ) , 1
8 (1 − ξ)

(
1 + η

) )
Gaussian quadrature points

(
ξ , η , ζ

) (
−

1
√

3
, − 1

√
3
, − 1

√
3

) (
1
√

3
, − 1

√
3
, − 1

√
3

) (
1
√

3
, 1
√

3
, − 1

√
3

) (
−

1
√

3
, 1
√

3
, − 1

√
3

)
Weight 1 1 1 1(
ξ , η , ζ

) (
−

1
√

3
, − 1

√
3
, 1
√

3

) (
1
√

3
, − 1

√
3
, 1
√

3

) (
1
√

3
, 1
√

3
, 1
√

3

) (
−

1
√

3
, 1
√

3
, 1
√

3

)
Weight 1 1 1 1

A.3.4 Pentahedron 6

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni) Derivative

(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)
1 ( −1 , 1 , 0 ) 1

2 (1 − ξ) η
(
−

1
2η ,

1
2 (1 − ξ) , 0.0

)
2 ( −1 , 0 , 1 ) 1

2 (1 − ξ) ζ
(
−

1
2ζ , 0.0 , 1

2 (1 − ξ)
)

3 ( −1 , 0 , 0 ) 1
2 (1 − ξ)

(
1 − η − ζ

) (
−

1
2

(
1 − η − ζ

)
, − 1

2 (1 − ξ) , − 1
2 (1 − ξ)

)
4 ( 1 , 1 , 0 ) 1

2 (1 + ξ) η
(

1
2η ,

1
2 (1 + ξ) , 0.0

)
5 ( 1 , 0 , 1 ) 1

2 (1 + ξ) ζ
(

1
2ζ , 0.0 , 1

2 (1 + ξ)
)

6 ( 1 , 0 , 0 ) 1
2 (1 + ξ)

(
1 − η − ζ

) (
1
2

(
1 − η − ζ

)
, − 1

2 (1 + ξ) , − 1
2 (1 + ξ)

)
Gaussian quadrature points

(
ξ , η , ζ

) (
−

1
√

3
, 0.5 , 0.5

) (
−

1
√

3
, 0.0 , 0.5

) (
−

1
√

3
, 0.5 , 0.0

) (
1
√

3
, 0.5 , 0.5

) (
1
√

3
, 0.0 , 0.5

) (
1
√

3
, 0.5 , 0.0

)
Weight 1/6 1/6 1/6 1/6 1/6 1/6
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A.3.5 Hexahedron 20

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni)

1 ( −1 , −1 , −1 ) 1
8 (1 − ξ)

(
1 − η

)
(1 − ζ)

(
−2 − ξ − η − ζ

)
2 ( 1 , −1 , −1 ) 1

8 (1 + ξ)
(
1 − η

)
(1 − ζ)

(
−2 + ξ − η − ζ

)
3 ( 1 , 1 , −1 ) 1

8 (1 + ξ)
(
1 + η

)
(1 − ζ)

(
−2 + ξ + η − ζ

)
4 ( −1 , 1 , −1 ) 1

8 (1 − ξ)
(
1 + η

)
(1 − ζ)

(
−2 − ξ + η − ζ

)
5 ( −1 , −1 , 1 ) 1

8 (1 − ξ)
(
1 − η

)
(1 + ζ)

(
−2 − ξ − η + ζ

)
6 ( 1 , −1 , 1 ) 1

8 (1 + ξ)
(
1 − η

)
(1 + ζ)

(
−2 + ξ − η + ζ

)
7 ( 1 , 1 , 1 ) 1

8 (1 + ξ)
(
1 + η

)
(1 + ζ)

(
−2 + ξ + η + ζ

)
8 ( −1 , 1 , 1 ) 1

8 (1 − ξ)
(
1 + η

)
(1 + ζ)

(
−2 − ξ + η + ζ

)
9 ( 0 , −1 , −1 ) 1

4

(
1 − ξ2) (1 − η) (1 − ζ)

10 ( 1 , 0 , −1 ) 1
4 (1 + ξ)

(
1 − η2) (1 − ζ)

11 ( 0 , 1 , −1 ) 1
4

(
1 − ξ2) (1 + η

)
(1 − ζ)

12 ( −1 , 0 , −1 ) 1
4 (1 − ξ)

(
1 − η2) (1 − ζ)

13 ( −1 , −1 , 0 ) 1
4 (1 − ξ)

(
1 − η

) (
1 − ζ2)

14 ( 1 , −1 , 0 ) 1
4 (1 + ξ)

(
1 − η

) (
1 − ζ2)

15 ( 1 , 1 , 0 ) 1
4 (1 + ξ)

(
1 + η

) (
1 − ζ2)

16 ( −1 , 1 , 0 ) 1
4 (1 − ξ)

(
1 + η

) (
1 − ζ2)

17 ( 0 , −1 , 1 ) 1
4

(
1 − ξ2) (1 − η) (1 + ζ)

18 ( 1 , 0 , 1 ) 1
4 (1 + ξ)

(
1 − η2) (1 + ζ)

19 ( 0 , 1 , 1 ) 1
4

(
1 − ξ2) (1 + η

)
(1 + ζ)

20 ( −1 , 0 , 1 ) 1
4 (1 − ξ)

(
1 − η2) (1 + ζ)
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Element properties

Node (i) Derivative
(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)
1

(
1
4

(
ξ + 1

2

(
η + ζ + 1

)) (
η − 1

)
(ζ − 1) , 1

4

(
η + 1

2 (ξ + ζ + 1)
)

(ξ − 1) (ζ − 1) , 1
4

(
ζ + 1

2

(
ξ + η + 1

))
(ξ − 1)

(
η − 1

) )
2

(
1
4

(
ξ − 1

2

(
η + ζ + 1

)) (
η − 1

)
(ζ − 1) , − 1

4

(
η − 1

2 (ξ − ζ − 1)
)

(ξ + 1) (ζ − 1) , − 1
4

(
ζ − 1

2

(
ξ − η − 1

))
(ξ + 1)

(
η − 1

) )
3

(
−

1
4

(
ξ + 1

2

(
η − ζ − 1

)) (
η + 1

)
(ζ − 1) , − 1

4

(
η + 1

2 (ξ − ζ − 1)
)

(ξ + 1) (ζ − 1) , 1
4

(
ζ − 1

2

(
ξ + η − 1

))
(ξ + 1)

(
η + 1

) )
4

(
−

1
4

(
ξ − 1

2

(
η − ζ − 1

)) (
η + 1

)
(ζ − 1) , 1

4

(
η − 1

2 (ξ + ζ + 1)
)

(ξ − 1) (ζ − 1) , − 1
4

(
ζ + 1

2

(
ξ − η + 1

))
(ξ − 1)

(
η + 1

) )
5

(
−

1
4

(
ξ + 1

2

(
η − ζ + 1

)) (
η − 1

)
(ζ + 1) , − 1

4

(
η + 1

2 (ξ − ζ + 1)
)

(ξ − 1) (ζ + 1) , 1
4

(
ζ − 1

2

(
ξ + η + 1

))
(ξ − 1)

(
η − 1

) )
6

(
−

1
4

(
ξ − 1

2

(
η − ζ + 1

)) (
η − 1

)
(ζ + 1) , 1

4

(
η − 1

2 (ξ + ζ − 1)
)

(ξ + 1) (ζ + 1) , − 1
4

(
ζ + 1

2

(
ξ − η − 1

))
(ξ + 1)

(
η − 1

) )
7

(
1
4

(
ξ + 1

2

(
η + ζ − 1

)) (
η + 1

)
(ζ + 1) , 1

4

(
η + 1

2 (ξ + ζ − 1)
)

(ξ + 1) (ζ + 1) , 1
4

(
ζ + 1

2

(
ξ + η − 1

))
(ξ + 1)

(
η + 1

) )
8

(
1
4

(
ξ − 1

2

(
η + ζ − 1

)) (
η + 1

)
(ζ + 1) , − 1

4

(
η − 1

2 (ξ − ζ + 1)
)

(ξ − 1) (ζ + 1) , − 1
4

(
ζ − 1

2

(
ξ − η + 1

))
(ξ − 1)

(
η + 1

) )
9

(
−

1
2ξ

(
η − 1

)
(ζ − 1) , − 1

4

(
ξ2
− 1

)
(ζ − 1) , − 1

4

(
ξ2
− 1

) (
η − 1

) )
10

(
1
4

(
η2
− 1

)
(ζ − 1) , 1

2η (ξ + 1) (ζ − 1) , 1
4 (ξ + 1)

(
η2
− 1

) )
11

(
1
2ξ

(
η + 1

)
(ζ − 1) , 1

4

(
ξ2
− 1

)
(ζ − 1) , 1

4

(
ξ2
− 1

) (
η + 1

) )
12

(
−

1
4

(
η2
− 1

)
(ζ − 1) , − 1

2η (ξ − 1) (ζ − 1) , − 1
4 (ξ − 1)

(
η2
− 1

) )
13

(
−

1
4

(
η − 1

) (
ζ2
− 1

)
, − 1

4 (ξ − 1)
(
ζ2
− 1

)
, − 1

2ζ (ξ − 1)
(
η − 1

) )
14

(
1
4

(
η − 1

) (
ζ2
− 1

)
, 1

4 (ξ + 1)
(
ζ2
− 1

)
, 1

2ζ (ξ + 1)
(
η − 1

) )
15

(
−

1
4

(
η + 1

) (
ζ2
− 1

)
, − 1

4 (ξ + 1)
(
ζ2
− 1

)
, − 1

2ζ (ξ + 1)
(
η + 1

) )
16

(
1
4

(
η + 1

) (
ζ2
− 1

)
, 1

4 (ξ − 1)
(
ζ2
− 1

)
, 1

2ζ (ξ − 1)
(
η + 1

) )
17

(
1
2ξ

(
η − 1

)
(ζ + 1) , 1

4

(
ξ2
− 1

)
(ζ + 1) , 1
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A.3.6 Pentahedron 15

Element properties

Node (i) Coord.
(
ξ , η , ζ

)
Shape function (Ni)

1 ( −1 , 1 , 0 ) 1
2η (1 − ξ)

(
2η − 2 − ξ

)
2 ( −1 , 0 , 1 ) 1

2ζ (1 − ξ) (2ζ − 2 − ξ)

3 ( −1 , 0 , 0 ) 1
2 (ξ − 1)

(
1 − η − ζ

) (
ξ + 2η + 2ζ

)
4 ( 1 , 1 , 0 ) 1

2η (1 + ξ)
(
2η − 2 + ξ

)
5 ( 1 , 0 , 1 ) 1

2ζ (1 + ξ) (2ζ − 2 + ξ)

6 ( 1 , 0 , 0 ) 1
2 (−ξ − 1)

(
1 − η − ζ

) (
−ξ + 2η + 2ζ

)
7 ( −1 , 0.5 , 0.5 ) 2ηζ (1 − ξ)

8 ( −1 , 0 , 0.5 ) 2ζ
(
1 − η − ζ

)
(1 − ξ)

9 ( −1 , 0.5 , 0 ) 2η (1 − ξ)
(
1 − η − ζ

)
10 ( 0 , 1 , 0 ) η

(
1 − ξ2)

11 ( 0 , 0 , 1 ) ζ
(
1 − ξ2)

12 ( 0 , 0 , 0 )
(
1 − ξ2) (1 − η − ζ)

13 ( 1 , 0.5 , 0.5 ) 2ηζ (1 + ξ)

14 ( 1 , 0 , 0.5 ) 2ζ (1 + ξ)
(
1 − η − ζ

)
15 ( 1 , 0.5 , 0 ) 2η (1 + ξ)

(
1 − η − ζ

)
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Element properties

Node (i) Derivative
(
∂Ni/∂ξ , ∂Ni/∂η , ∂Ni/∂ζ

)
1

(
1
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(
2ξ − 2η + 1

)
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(
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)
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1
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−

1
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) (
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)
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(
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(
4ζ + ξ + 2

(
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Appendix B

Material parameters

B.1 Linear elastic isotropic

Keyword: elastic

Description here: 4.4.1
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ Plane_Stress : (bool) Plane stress simplification (only 2D problems)

B.2 Linear elastic anisotropic

Keyword: elastic_anisotropic

Description here: 4.4.1
Parameters:
◦ rho : (Real) Density
◦ n1 : (Vector<Real>) Direction of the main material axis
◦ n2 : (Vector<Real>) Direction of the second material axis (if applicable)
◦ n3 : (Vector<Real>) Direction of the third material axis (if applicable)
◦ C.. : (Real) Coefficient ij of the material tensor C (all the 36 values in Voigt notation can be

entered .)

B.3 Linear elastic orthotropic

Keyword: elastic_orthotropic

Description here: 4.4.1
Parameters:
◦ rho : (Real) Density
◦ n1 : (Vector<Real>) Direction of the main material axis
◦ n2 : (Vector<Real>) Direction of the second material axis (if applicable)
◦ n3 : (Vector<Real>) Direction of the third material axis (if applicable)
◦ E1 : (Real) Young’s modulus (n1)
◦ E2 : (Real) Young’s modulus (n2)
◦ E3 : (Real) Young’s modulus (n3)
◦ nu12 : (Real) Poisson’s ratio (12)
◦ nu13 : (Real) Poisson’s ratio (13)
◦ nu23 : (Real) Poisson’s ratio (23)
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◦ G12 : (Real) Shear modulus (12)
◦ G13 : (Real) Shear modulus (13)
◦ G23 : (Real) Shear modulus (23)

B.4 Neohookean (finite strains)

Keyword: neohookean
Description here: 4.4.2
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ Plane_Stress : (bool) Plane stress simplification : false = plane strain, true = plane stress

(default: false) (only 2D problems)

B.5 Standard linear solid

Keyword: sls_deviatoric

Description here: 4.4.3
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ Plane_Stress : (bool) Plane stress simplification (only 2D problems)
◦ Eta : (Real) Viscosity
◦ Ev : (Real) Stiffness of the viscous element

B.6 Elasto-plastic linear isotropic hardening

Keyword: plastic_linear_isotropic_hardening

Description here: 4.4.4
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ h : (Real) Hardening modulus
◦ sigma_y : (Real) Yielding stress

B.7 Damage: Marigo

Keyword: marigo

Description here: 4.4.5
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ Plane_Stress : (bool) Plane stress simplification (only 2D problems)
◦ Yd : (Random) Rupture criterion
◦ Sd : (Real) Damage Energy
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B.8 Damage: Mazars

Keyword: mazars

Description here: 4.4.5
Parameters:
◦ rho : (Real) Density
◦ E : (Real) Young’s modulus
◦ nu : (Real) Poisson’s ratio
◦ At : (Real) Traction post-peak asymptotic value
◦ Bt : (Real) Traction decay shape
◦ Ac : (Real) Compression post-peak asymptotic value
◦ Bc : (Real) Compression decay shape
◦ K0 : (Real) Damage threshold
◦ beta : (Real) Shear parameter

B.9 Cohesive linear

Keyword: cohesive_linear
Description here: 4.5.1
Parameters:
◦ sigma_c : (Real) Critical stress σc

Either G_c and kappa or, G_cI and G_cII or delta_c have to be specified
◦ G_c : (Real) Mode I fracture energy
◦ kappa : (Real) κ = G_cII/G_cI parameter (default 1)
◦ delta_c : (Real) Critical displacement δc

◦ beta : (Real) β parameter (default 1)
◦ penalty : (Real) penalty coefficient for compression α (optional; default 0)
◦ volume_s & m_s : (Reals) optional; to adapt statistical distribution following [22]
◦ contact_after_breaking : (bool) Activation of contact when the elements are fully damaged

(default false)
◦ max_quad_stress_insertion : (bool) Insertion of cohesive element when stress is high

enough just on one quadrature point (default false)

B.10 Cohesive bilinear

Keyword: cohesive_bilinear
Description here: 4.5.1
Parameters:
◦ sigma_c : (Real) Critical stress σc

◦ delta_0 : (Real) Elastic limit displacement δ0

Either G_c and kappa or, G_cI and G_cII or delta_c have to be specified
◦ G_c : (Real) Mode I fracture energy
◦ kappa : (Real) κ = G_cII/G_cI parameter (default 1)
◦ delta_c : (Real) Critical displacement δc

◦ beta : (Real) β parameter (default 1)
◦ penalty : (Real) Penalty coefficient for compression α (optional; default 0)

B.11 Cohesive linear with friction

Keyword: cohesive_linear_friction
Description here: 4.5.2
Parameters:
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◦ sigma_c : (Real) Critical stress σc

Either G_c and kappa or, G_cI and G_cII or delta_c have to be specified
◦ G_c : (Real) Mode I fracture energy
◦ kappa : (Real) κ = G_cII/G_cI parameter (default 1)
◦ delta_c : (Real) Critical displacement δc

◦ beta : (Real) β parameter (default 1)
◦ penalty : (Real) Penalty coefficient for compression α (optional; default 0)
◦ volume_s & m_s : (Reals) optional; to adapt statistical distribution following [22]
◦ contact_after_breaking : (bool) Activation of contact when the elements are fully damaged

(default false)
◦ max_quad_stress_insertion : (bool) Insertion of cohesive element when stress is high

enough just on one quadrature point (default false)
◦ mu : (Real) Maximum attainable value of the friction coefficient, µ (default 0)
◦ penalty_for_friction : (Real) Penalty parameter for the elasto-plastic friction law (default

0)

B.12 Cohesive linear fatigue

Keyword: cohesive_linear_fatigue

Description here: 4.5.3
Parameters:
◦ sigma_c : (Real) Critical stress σc

◦ delta_c : (Real) Critical displacement δc

◦ beta : (Real) β parameter (default 1)
◦ G_c : (Real) Mode I fracture energy
◦ kappa : (Real) κ parameter (default 1)
◦ penalty : (Real) penalty coefficient α (optional, default 0)
◦ delta_f : (Real) Characteristic opening displacement δf (see [15])

B.13 Cohesive exponential

Keyword: cohesive_exponential

Description here: 4.5.4
Parameters:
◦ sigma_c : (Real) Critical stress σc

◦ delta_c : (Real) Displacement at the peak traction δc

◦ beta : (Real) β parameter (default 1)
◦ exponential_penalty : (Bool) parameter to activate contact penalty following the exponen-

tial law (default true)
◦ contact_tangent : (Real) ratio of the contact tangent over the initial exponential tangent (to

be defined if exponential_penalty is false; default 1.0)



Appendix C

Package dependencies

During the configuration, cmake offers several Akantu options which have dependencies with
each other or with external packages and software. Each of these are described in details now.

AKANTU_USE_BOOST Akantu uses Boost header only for preprocessor and Spirit Under
Ubuntu (14.04 LTS) the installation can be performed using the commands:

  > sudo apt-get install libboost

AKANTU_COHESIVE_ELEMENT This package activates the cohesive elements engine within
Akantu. It depends on:

◦ A fortran compiler.

◦ An implementation of BLAS/LAPACK.

Dependencies: AKANTU_USE_LAPACK AKANTU_SOLID_MECHANICS AKANTU_CORE
AKANTU_USE_BOOST

AKANTU_CORE This package is the core engine of Akantu. It depends on:

◦ A C++ compiler (GCC >= 4, or Intel).

◦ The cross-platform, open-source CMake build system.

◦ The Boost C++ portable libraries.

◦ The zlib compression library.

Under Ubuntu (14.04 LTS) the installation can be performed using the commands:

  > sudo apt-get install cmake libboost-dev zlib1g-dev g++

Under Mac OS X the installation requires the following steps:

◦ Install Xcode

◦ Install the command line tools.

◦ Install the MacPorts project which allows to automatically download and install opensource
packages.

Then the following commands should be typed in a terminal:

  > sudo port install cmake gcc48 boost

Dependencies: AKANTU_USE_BOOST
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AKANTU_DAMAGE_NON_LOCAL This package activates the non local damage feature of
AKANTU Dependencies: AKANTU_USE_LAPACK

AKANTU_DOCUMENTATION_MANUAL This package alows to compile the user manual in
the build folder build/doc/manual/manual.pdf . Under Ubuntu (14.04 LTS), the installation of
the dependencies can be performed using the following command:

  > sudo apt-get install install rubber texlive texlive-science texlive-latex-

extra

AKANTU_DUMPERS This package activates the IOHelper facilities withing Akantu. This is
mandatory if you want to be able to output Paraview files as well as any Dumper within Akantu.
Dependencies: AKANTU_USE_IOHELPER

AKANTU_HEAT_TRANSFER This package activates the heat transfer model within Akantu.
It has no additional dependencies.

AKANTU_IMPLICIT This package activates the sparse solver necessary to solve implicitely
static/dynamic finite element problems. It depends on:

◦ MUMPS, a parallel sparse direct solver.

◦ Scotch, a graph partitioner.

Dependencies: AKANTU_USE_MUMPS

AKANTU_USE_IOHELPER TODO: No Documentation in iohelper.cmake looking for the se-
quence:

\package_declare_documentation(
  IOHelper

  "documentation text"

  )

AKANTU_USE_LAPACK This package provides access to a LAPACK implementation. Under
Ubuntu (14.04 LTS), the installation can be performed using the following command:

  > sudo apt-get install libatlas-base-dev

AKANTU_USE_MPI This is a meta package providing access to MPI. Under Ubuntu (14.04
LTS) the installation can be performed using the commands:

  > sudo apt-get install libopenmpi-dev

Under Mac OS X the installation requires the following steps:

  > sudo port install mpich-devel

http://mumps.enseeiht.fr/
http://www.labri.fr/perso/pelegrin/scotch/
/home/richart/dev/lsms/akantu/packages/iohelper.cmake
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AKANTU_USE_MUMPS This package enables the MUMPS parallel direct solver for sparce
matrices. This is necessary to solve static or implicit problems. Under Ubuntu (14.04 LTS) the
installation can be performed using the commands:

  > sudo apt-get install libmumps-seq-dev # for sequential

  > sudo apt-get install libmumps-dev     # for parallel

Under Mac OS X the installation requires the following steps:

  > sudo port install mumps

If you activate the advanced option AKANTU_USE_THIRD_PARTY_MUMPS the make sys-
tem of akantu can automatically compile MUMPS. For this you will have to download
MUMPS from http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr/MUMPS and place it
in <akantu source>/third-party

AKANTU_USE_NUMPY This package allows to wrap Akantu arrays to numpy arrays Under
Ubuntu (14.04 LTS) the installation can be performed using the commands:

  > sudo apt-get install python-numpy

AKANTU_PARALLEL This option activates the parallel features of AKANTU. Dependencies:
AKANTU_USE_MPI AKANTU_USE_SCOTCH

AKANTU_PYTHON_INTERFACE This package enables the python interface of Akantu. It
relies on swig3.0 to generate the code Under Ubuntu (14.04 LTS) the installation can be performed
using the commands:

  > sudo apt-get install swig3.0

Dependencies: AKANTU_USE_PYTHONLIBS AKANTU_USE_NUMPY

AKANTU_USE_PYTHONLIBS This package is a dependency of the python interface Under
Ubuntu (14.04 LTS) the installation can be performed using the commands:

  > sudo apt-get install libpython2.7-dev

Dependencies: AKANTU_USE_NUMPY

AKANTU_USE_SCOTCH This package enables the use the Scotch library in order to perform
a graph partitioning leading to the domain decomposition used within Akantu Under Ubuntu
(14.04 LTS) the installation can be performed using the commands:

  > sudo apt-get install libscotch-dev

If you activate the advanced option AKANTU_USE_THIRD_PARTY_SCOTCH the make system
of akantu can automatically compile Scotch. If the automated download fails due to a SSL access
not supported by your version of CMake please download the file scotch_5.1.12b_esmumps.tar.gz
and then place it in the directory <akantu source>/third-party

AKANTU_SOLID_MECHANICS TODO: No Documentation in solid_mechanics.cmake look-
ing for the sequence:

\package_declare_documentation(
  solid\_mechanics

  "documentation text"

  )

Dependencies: AKANTU_CORE AKANTU_USE_BOOST

http://mumps.enseeiht.fr/
http://mumps.enseeiht.fr/
http://graal.ens-lyon.fr/MUMPS
http://www.labri.fr/perso/pelegrin/scotch/
scotch_5.1.12b_esmumps.tar.gz
/home/richart/dev/lsms/akantu/packages/solid_mechanics.cmake


88 APPENDIX C. PACKAGE DEPENDENCIES

AKANTU_STRUCTURAL_MECHANICS This package activates the compilation for the Struc-
tural Mechanics engine of Akantu Dependencies: AKANTU_IMPLICIT AKANTU_USE_MUMPS
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